期刊文献+

僵尸网络(BOTNET)监控技术研究 被引量:6

Study on BOTNET Detection and Controlling Techniques
下载PDF
导出
摘要 僵尸网络(BOTNET)是互联网网络的重大安全威胁之一,本文对僵尸网络的蔓延、通信和攻击模式进行了介绍,对僵尸网络发现、监测和控制方法进行了研究。针对目前最主要的基于IRC协议僵尸网络,设计并实现一个自动识别系统,可以有效的帮助网络安全事件处理人员对僵尸网络进行分析和处置。 BOTNET has become one of the major critical threats to the Internet security. In this paper, the propagation methods, communication and attacking pattern of BOTNET were introduced. The detection, monitor and control methods for BOTNET were pre- sent. Aiming at the most common IRC-based BOTNET, an automatic detection system was designed and implemented, which could help the network security emergency persons to analyze and handle BOTNET effectively.
出处 《微计算机信息》 北大核心 2008年第21期51-53,共3页 Control & Automation
基金 科技部国家高技术研究发展计划(863) "国家公共互联网安全监测 预警与危机控制关键技术研究"课题支持(2006AA01Z451)
关键词 僵尸网络 IRC 网络安全 BONNET IRC Network Security
  • 相关文献

参考文献9

  • 1国家计算机网络应急技术处理协调中心.CNCERT/CC网络安全工作报告.http://www.cert.org.cn. 被引量:1
  • 2The Honeynet Project & Research Alliance, “Know your Enemy: Tracking Botnets-Using honeynets to learn more about Bots”, http://www.honeynet.org/, Mar. 2005. 被引量:1
  • 3杜跃进,崔翔.僵尸网络及其启发[J].中国数据通信,2005,7(5):9-13. 被引量:14
  • 4E. Cooke, F. Jahanian, and D. McPherson, “The Zombie Roundup: Understanding, Detecting, and Disrupting Botnets, Proc. of Steps to Reducing Unwanted Tra#c on the Internet Workshop (SRUTI ' 05), Boston, 2005. 被引量:1
  • 5James R. Binkley and Suresh Singh, "An Algorithm for Anomaly-based Botnet Detection", Computer Science, PSU, USENIX SRUTI: ' 06 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet, July 7 2006. 被引量:1
  • 6Cliff Zou, David Dagon and Wenke Lee. Modeling and Measuring Botnets, SRI International ARO-DARPA-DHS Special Workshop on Botnets, Arlington, VA, June 22, 2006. 被引量:1
  • 7D. Dagon, G. Gu, C. Zou, J. Grizzard et al.A Taxonomy of Botnets, 2005 NSF Cyber Trust Principal Investigators Meeting Newport Beach, Calif, Sept. 25-27, 2005. 被引量:1
  • 8金双民,郑辉,段海新.僵尸网络研究系列文章之二 设计自动识别系统[J].中国教育网络,2006(7):44-46. 被引量:4
  • 9张艳霞,王劲林.p2p网络自服务访问控制协议设计[J].微计算机信息,2007,23(05X):69-71. 被引量:2

二级参考文献22

  • 1周先存,侯整风.一种基于ELGamal签名和零知识证明的身份认证方案[J].微计算机信息,2004,20(5):114-114. 被引量:15
  • 2http://2005.cert.org.cn/index.html 被引量:1
  • 3CNCERT/CC. 今年上半年我国互联网安全事件分析. http://www.cert.org.cn/articles/statistic/common/2003092321145.shtml, 2003年9月 被引量:1
  • 4F-Secure Virus Descriptions : Deloder. http://www.f-secure.com/v-descs/deloader.shtml, 2003 被引量:1
  • 5Stone V. W32 Deloder Worm: the building of an army. http://www.giac.org/certified_professionals/practicals/gcih/0454.php , 2003 被引量:1
  • 6Puri R, Bots & BotNet: an overview, www.sans.org/rr/whitepapers/malicious/1299.php , 2003, 8 被引量:1
  • 7Vogt T. Simulating and optimising worm propagation algorithms. www.securityfocus.com/guest/24046, 2003, 9 被引量:1
  • 8http://www.cert.org 被引量:1
  • 9http://www.messagelabs.com 被引量:1
  • 10CNCERT/CC. CNCERT/CC 2004年网络安全工作报告. http://www.cert.org.cn/articles/statistic/common/2005030822153.shtml 被引量:1

共引文献16

同被引文献49

  • 1文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 2Arce I, Levy E. An analysis of the slapper worm. IEEE Security & Privacy, 2003,1(1):82-87. 被引量:1
  • 3Kalt C. RFC 2810: Internet relay chat: Architecture. RFC 2810, IETF, 2000. 被引量:1
  • 4警惕僵尸网络‘还魂”计算机世界/2005年/7月/25日/第D06版. 被引量:1
  • 5聚友博客.解析:僵尸网络检测方法.http://blog.myspace.cn,e,403277986.htm.2008-12-27. 被引量:1
  • 6Barford P, Blodgett M. Toward botnet mesocosms. In: Proc. of the 1st Workshop on Hot Topics in Understanding Botnets (HotBots 2007). http: //portal.acm.org/citation.cfm?.id= 1323128.1323134&coll=GUIDE&dl=GUIDE&CFID= 16751383&CFTOKEN=82837820. 2007. 被引量:1
  • 7Bacher P, Holz T, Kotler M, et al. Know your enemy: Tracking botnets. http://www.honeynet.org/papers/bots. 2005. 被引量:1
  • 8中国蜜网项目组门户网站.http://www.honeynet.org.cn.2004-09. 被引量:1
  • 9P Wurzinger, L Bilge, T Holz, et al. Detecting Bots with Automatically Generated Network Signatures, 2010 etdorado uni-dortmund.de.https://eldorado.tu-dortmund.de/bitstream/2003/26613 /1/02-02.pdf. 2009. 被引量:1
  • 10Strayer T, Lapsley D, Walsh R, et al. Botnet Detection Based on Network Behavior. In: Botnet Detection: Countering the Largest Security Threat. Chapter 1.1-29. 2008. 被引量:1

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部