期刊文献+

双光子Jaynes-Cummings模型中光场的熵压缩 被引量:2

Entropic Squeezing of the Optical Field in the Two-Photon Jaynes-Cummings Model
原文传递
导出
摘要 研究传统的光场压缩效应一般从海森伯(Heisenberg)测不准关系出发,应用均方根(RMS)偏差量度光场的量子涨落.由于均方根偏差只涉及光场密度矩阵的二阶统计矩,在许多情况下,这种物理量不能精确量度光场的量子涨落.海森伯测不准关系是熵测不准关系的一个特例,可用熵量度光场正交分量的量子涨落.依据熵测不准关系,建立了光场熵压缩的概念.研究了双光子杰内斯-卡明(Jaynes-Cummings(J-C))模型中光场的熵压缩规律.对比发现,熵指数δxf(t)比均方根偏差Δxf(t)更敏感于光场的压缩效应,是量度光场的压缩效应的高灵敏度物理量. Traditional researches on the squeezing effect of optical field are based on Heisenberg's uncertainty principle and use root mean square (RMS) deviation to measure the quantum fluctuation of optical field. However, RMS deviation only contains the second-order statistical moments of the density operator. Thus under many circumstances, RMS deviation cannot precisely measure the quantum fluctuation. In fact, Heisenberg's uncertainty principle is a special case of entropy uncertainty relation, and entropy can be used to measure the quantum fluctuation of the quadrature components of the field. Based on entropy uncertainty relation, the concept of entropy squeezing has been formulated. Entropy squeezing of the optical field in two photon Jaynes-Cummings (J-C) model is discussed. By comparing, it is found that the entropy exponential δxf(t) is more sensitive to the squeezing effect of optical field than the RMS deviation Δxf(t), and is a high sensitive parameter to measure optical field.
出处 《中国激光》 EI CAS CSCD 北大核心 2008年第8期1228-1234,共7页 Chinese Journal of Lasers
关键词 量子光学 双光子杰内斯-卡明模型 熵压缩 场压缩 quantum optics two-photon Jaynes-Cummings model entropic squeezing field squeezing
  • 相关文献

参考文献14

  • 1C. M. Caves. Quantum-mechanical noise in an interferomenter [J]. Phys. Rev. D, 1981, 23(8):1693-1708 被引量:1
  • 2J. Gea-Banacloche, G. Leuchs. Squeezed states for interferometric gravitational-wave detectors [J]. J. Mod. Opt., 1987, 34(6,7):793-811 被引量:1
  • 3V. Buzek, H. Keitel, P. L. Knight. Sampling entropies and operational phase-space measurement [J]. Phys. Rev. A, 1995, 51(3):2575-2593 被引量:1
  • 4J. B. M. Uffink, J. Hilgevoord. New bounds for the uncertainty principle [J]. Phys. Lett. A, 1984, 105(4,5):176-178 被引量:1
  • 5J. B. M. Uffink, J. Hilgevoord. Uncertainty principle and uncertainty relation [J]. Found. Phys., 1985, 15(9):925-944 被引量:1
  • 6W. Beckner. Inequalities in Fourier analysis [J]. Am. Math., 1975, 102(2):159-182 被引量:1
  • 7I. Bialynieki-Birala, J. Mycielski. Uncertainty relations for information entropy in wave mechanics [J]. Commun. Math. Phys., 1975, 44(2):129-132 被引量:1
  • 8A. Orlowski. Information entropy and squeezing of quantum fluctuation [J]. Phys. Rev. A, 1997, 56(4):2545-2548 被引量:1
  • 9S. R. Jorge. Position-momentum entropic uncertainty relation and complementarity in single-slit and double-slit experiments [J]. Phys. Rev. A, 1998, 57(3):1519-1525 被引量:1
  • 10方卯发,陈菊梅.熵测不准关系与光场的熵压缩[J].光学学报,2001,21(1):8-12. 被引量:39

二级参考文献5

共引文献40

同被引文献21

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部