期刊文献+

求解作业排序问题的一种改进修复约束满足算法 被引量:2

Improved repair-based constraint satisfaction method for flow shop scheduling
下载PDF
导出
摘要 修复约束满足算法(修复法)是在完整初始解的基础上不断对变量进行修复,最终得到可行解.对此,提出一种求解flow shop排序问题的改进修复法(IRCS_WT),通过采用新的变量表达方式,设计了一种以启发式优化规则为指导的变量选择算法(LWT),并采用一种变量互换算法(LTEE)保证算法的全局搜索性能.将新算法应用于31个标准算例,与传统算法及遗传算法的优化结果进行比较,结果表明在相同运算时间下改进算法具有明显的优越性. Repair-based constraint satisfaction method is one of the two main categories of constraint satisfaction (CS) algorithms. It starts with an arbitrary completed solution, and then resolves conflicts by local repair. An improved repair-based constraint satisfaction (IRCS_WT) method for flow shop scheduling is proposed. In IRCS_WT, a heuristic rule of largest weighted tardiness priority (LWT) is proposed for variables ordering procedure, and a new heuristic of largest tardy and early variables exchanging (LTEE) is designed to escape from local optima. Computational experiments of 31 flow shop scheduling problems are conducted to compare the IRCS_WT with other two heuristic methods, extended NEH and filtered beam search (FBS), as well as genetic algorithm (GA). The results show that IRCS_WT significantly outperforms the competitors with the same running time.
出处 《控制与决策》 EI CSCD 北大核心 2008年第8期850-856,共7页 Control and Decision
基金 国家自然科学基金项目(70771003,70521001) 新世纪优秀人才支持计划项目(NCT040175)
关键词 约束满足 修复法 FLOW shop排序问题 加权总延误 Constraint satisfaction Repair-based method Flow shop scheduling Total weighted tardiness
  • 相关文献

参考文献22

  • 1田盛丰.一种基于修改的约束满足算法[J].计算机研究与发展,1997,34(2):93-98. 被引量:5
  • 2Tsang E. Foundations of constraint satisfaction[M]. San Diego: Academic Press, 1993. 被引量:1
  • 3Dechter R, Jeavons P, Rossi F, et al. Constraint processing [M]. San Francisco: Morgan Kaufmann Publishers, 2003. 被引量:1
  • 4段黎明,陈进,刘飞.基于约束分析的 Job Shop 调度算法的综述[J].重庆大学学报(自然科学版),1998,21(1):133-138. 被引量:11
  • 5郭冬芬,李铁克.基于约束满足的车间调度算法综述[J].计算机集成制造系统,2007,13(1):117-125. 被引量:34
  • 6Russel S, Norvig P. Artificial intelligence: A modern approach[M]. 2nd ed. New Jersey: Pearson Education, 2002. 被引量:1
  • 7Minton S, Johnston M D, Philips A B, et al. Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems [J]. Artificial Intelligence, 1992, 58(1-3): 161-205. 被引量:1
  • 8Morris P. The breakout method for escaping from local minima[C]. Proc of the llth National Conf on Artificial Intelligence. Washington, 1993: 40-45. 被引量:1
  • 9Yugami N, Ohta Y, Hara H. Improving repair-based constraint satisfaction methods by value propagation[C]. Proc of the 12th National Conf on Artificial Intelligence. Sna Jose, 1994: 344-349. 被引量:1
  • 10Richards E T, Richards B. Non-systematic search and learning: An empirical study[C]. Proc of the 4th Int Conf on Principles and Practice of Constraint Programming - CP'98. Pisa, 1998: 370-384. 被引量:1

二级参考文献85

  • 1杨宏安,孙树栋,王荪馨,柴永生.基于CSP的Job shop调度算法研究[J].系统工程,2004,22(11):15-18. 被引量:9
  • 2郭冬芬,李铁克.基于约束满足方法求解炼钢—连铸生产调度问题[J].信息与控制,2005,34(6):753-758. 被引量:9
  • 3刘飞,制造系统工程,1995年 被引量:1
  • 4Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithms[A].Proceedings of 1st International Congress on Genetic Algorithms[C].Hillsdale,Lawrence Erlbaum,New York,1985:93-100. 被引量:1
  • 5Goldberg D E.Genetic Algorithms:In Search,Optimization and Machine Learning[M].New York:Addison-Wesley,1989. 被引量:1
  • 6Horn J,Nafpliotis N,Goldberg D E.A niched pareto genetic algorithm for multiobjective optimization[A].Proceedings of 1st IEEE Congress on Evolutionary Computation,IEEE World Congress on Computational Computation[C],1994,1:82-87. 被引量:1
  • 7Srinivas N,Deb K.Multiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation,1995,2(3):221-248. 被引量:1
  • 8Fonseca C M,Fleming P J.Genetic algorithms for multiobjective optimization:Formulation,discussion and generalization[A].Proceedings of 5th International Congress on Genetic Algorithms[C].Morgan Kaufmann,California,1993:416-423. 被引量:1
  • 9Coello C A C.An comprehensive survey of evolutionary-based multiobjective optimization techniques[J].Knowledge and Information System,1999,1(3):269-308. 被引量:1
  • 10Rudolph G.On a multi-objective evolutionary algorithm and its convergence to the pareto set[A].Proceedings of 1998 IEEE International Congress on Evolutionary Computational Intelligence[C],1998:511-516. 被引量:1

共引文献53

同被引文献33

  • 1KARABOGA D. An idea based on honey bee swarm for num- rical optimization[EB/OL]. [2010-10-11]. http://mr, erciyes. edu. tr/abc/pub/tr06 2005. pdf. 被引量:1
  • 2KARMA D, AKAY B. Artificial bee colony(ABC), harmony search and bees algorithms on numerical optimization [EB/OL]. ( 2009 07-17 ) [2010-10-10]. http://conference. iproms, org/conference/download/4153/76. 被引量:1
  • 3KARABOGA D, AKAY B. A comparative study of artificial bee c01ony algorithm[J]. Applied Mathematics and Computation, 2009,214(1):108-132. 被引量:1
  • 4PAN Q, FATIH TASGETIREN M, SUGANTHAN P N, etal. A discrete artificial bee colony algorithm for the lot- streaming flow shop scheduling problem[J]. Information Sciences, 2011,181 (12) : 2455-2468. 被引量:1
  • 5PANSUWAN P, RUKWONG N, PONGCHAROEN P. I- dentifying optimum artificial bee colony(ABC)algorithm's pa- rameters for scheduling the manufacture and assembly of complex products[C]//Proceedings of the 2nd International Conference on Computer and Network Technology. Washington, D. C. ,USA:IEEE,2010:339-343. 被引量:1
  • 6LI J, PAN Q, XIE S. A hybrid artificial bee colony algo- rithmfor flexible Job Shop scheduling problems[J]. Interna- tional Journal of Computers, Communication & Control. 2011, 6(2): 286-296. 被引量:1
  • 7MichaelPinedo.调度:原理、算法和系统[M].张智海,译.北京:清华大学出版社,2008. 被引量:1
  • 8KARABOGA D, BASTURK B. A powerful and efficient al- gorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007,39 (3) : 459-471. 被引量:1
  • 9PAN Q, FATIHTASGETIREN M, SUGANTHAN P N, et al. A discrete artificial bee colony algorithm for the lot- streaming flow shop scheduling problem[J]. Information Sciences,2011,181(12):2455-2468. 被引量:1
  • 10MANDERICK B, DE WEGER M K, SPIESSENS P. The genetic algorithm and the structure of the fitness landscape [C]//proceedings of the 4th International Conference on Genetic Algorithms. New York, N. Y. , USA: ACM, 1991: 143-150. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部