期刊文献+

用于连续域优化的蚁群算法及其收敛性研究 被引量:13

Ant Colony Optimization to Continuous Domains and Its Convergence
下载PDF
导出
摘要 蚁群算法作为一种新的智能计算模式,由于其离散性本质而在组合优化问题上取得巨大成功,但这也限制了它在连续问题求解中的应用。为此,提出一种用于连续域寻优的改进蚁群算法。算法的局部搜索基于解决离散问题的经典蚁群优化思想,全局搜索利用AntWalk和AntDiffusion技术,且每代寻优结束后均采用"精英策略"把本代最优个体保留到下一代中。最后在理论上对其进行了收敛性分析,证明可较快地收敛到全局最优解,并用几个基准函数对算法做了仿真测试,均取得良好效果。 As a new model of intelligent computing, ant colony optimization (ACO) is a great success on combinatorial optimization problems, however, it is restricted to settle the problem of continuous domains because of its discrete nature. An improved ant colony optimization was proposed. In the local search, the improved ant colony approach is based on the idea of ACO that is used for discrete domains, but utilizes Ant Walk and Ant Diffusion operation in the global search, and while each generation accomplished, preserves the best individual to next generation by the idea of "Elitist Strategy". Then its convergence was analyzed theoretically, and was proved to converge to the optimization solution rapidly. This algorithm was tested by several benchmark functions, and could handle these optimization problems very well.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第15期4021-4024,共4页 Journal of System Simulation
关键词 蚁群算法 连续域 遗传算法 收敛 ant colony optimization continuous domains genetic algorithm convergence
  • 相关文献

参考文献11

二级参考文献31

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66. 被引量:1
  • 4[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41. 被引量:1
  • 5[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627. 被引量:1
  • 6[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386. 被引量:1
  • 7[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274. 被引量:1
  • 8[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176. 被引量:1
  • 9[7]Maniezzo V,Dorigo M,Colorni A.Algodesk:An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem[J]. European J Oper Res,1995,81(1):188-204. 被引量:1
  • 10[8]Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem[J]. Infor J Comp,1999,11(4):358-369. 被引量:1

共引文献248

同被引文献151

引证文献13

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部