期刊文献+

基于局部图像描述的目标跟踪方法

Object tracking method based on local image descriptor
下载PDF
导出
摘要 针对视频目标跟踪问题,介绍了一种基于局部图像描述的目标跟踪方法.以高斯差值函数图像金字塔中的空间极值点作为图像关键点,在关键点邻接域中,以基于局部二进制模式(LBP)的纹理统计和色彩分布作为特征量,应用特征量在视频序列中的匹配实现目标跟踪.当视频序列中存在目标全局运动、有限度的尺度变化、旋转等复杂因素时,采用纹理和色彩分布得到的局部图像描述具备一定的稳定性,运用权值调整算法寻找稳定特征量集合,能够进一步自适应跟踪目标的外观变化.测试了不同条件下的视频序列,该方法具备良好的跟踪效果和一定的稳定性. A novel local image descriptor based method was introduced for object tracking from video sequences. -The key points of an image were generated from the extreme points in difference of Gaussian (DOG) image pyramid, and the local image descriptor was based on local binary pattern (LBP) histogram and color histogram. The tracking was accomplished by the features matching in the series of frames. The LBP and color based descriptor were stable even when there are global moving,limited scale changes, or rotations in video sequences. An algorithm for adjusting weight of descriptor was applied to find a stable descriptor set and improve the reliability when the object appearance changes. Tests of several video sequences show that the method has good stability and tracking performance.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第7期1179-1183,共5页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2003AAIZ2130) 浙江省科技计划重大科技技术攻关资助项目(2005C11001-02)
关键词 局部图像描述 目标跟踪 局部二进制模式 关键点定位 local image descriptor object tracking local binary pattern key point location
  • 相关文献

参考文献8

  • 1COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift [C] // IEEE International Proceedings of the Computer Vision and Pattern Recognition. Stoughton: Printing House, 2000: 142 - 149. 被引量:1
  • 2CHENG Y. Mean shift, mode seeking and clustering [J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8) : 790- 799. 被引量:1
  • 3BLACK M J, JEPSON A D. A probabilistic framework for matching temporal trajectories: condensation-based recognition of gestures and expressions [C] // Proceedings of 5th European Conference on Computer Vision. [S. l.],[s. n.], 1998: 909-924. 被引量:1
  • 4LOWE D G. Object recognition from local scale-invariant features [C]///Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 2:1150-1157. 被引量:1
  • 5LOWED G. Distinctive image features from scale-invariant key points [J]. International Journal of Computer Vision, 2004, 60(2): 91- 110. 被引量:1
  • 6MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [C]// Proceedings of Computer Vision and Pattern Recognition. [S. l. ] : [s. n. ], 2003. 被引量:1
  • 7OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7) :971 - 987. 被引量:1
  • 8TANG Feng, TAO Hai. Object tracking with dynamic feature graph [C]//Proceedings 2nd Joint IEEE International Workshop on VS-PETS. Beijing: IEEE, 2005: 25-32. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部