期刊文献+

双能量X射线荧光全息图重构算法消除孪生像的模拟研究 被引量:2

Simulation study of two-energy X-ray fluorescence holograms reconstruction algorithm to remove twin images
下载PDF
导出
摘要 X射线荧光全息术以样品内部的发光原子作为相干光源进行全息成像,可以直接观测到晶体内部原子的三维排列结构。和传统的全息术一样,X射线荧光全息术也遇到了孪生像问题。本文以27个Fe原子成立方排列的结构为模型,采用双能量荧光全息图重构算法研究入射X射线能量的选取对消除孪生像效果的影响。结果表明:记录荧光全息图的两个X射线能量越接近(对于内探测器全息术而言,最小能量差取决于单色器和探测器的能量分辨率;对于内源全息术而言,最小的能量差取决于元素的两个紧邻荧光能量差和探测器的能量分辨率),消除孪生像的效果越好;而入射X射线的能量越高,则原子像的分辨率越高。 Unlike traditional outside-source holography, X-ray fluorescence holography is carried out with fluorescent atoms in a sample as source light for holographic imaging. With the method, three-dimensional arrangement of atoms into crystals can be observed obviously. However, just like traditional outside-source holography, X-ray fluorescence holography suffers from the inherent twin-image problem, too. With a 27-Fe-atoms cubic lattice as model, we discuss in this paper influence of the photon energy of incident source in removing twin images in reconstructed atomic images by numerical simulation and reconstruction with two-energy X-ray fluorescence holography. The results indicate that incident X-rays of nearer energies have better effect of removing twin images. In the detector of X-ray holography, minimum difference of the two incident energies depends on energy resolution of the monochromator and detector, and for inside source X-ray holography, minimum difference of the two incident energies depends on difference of two neighboring fluorescent energies emitting from the element and energy resolution of detector. The spatial resolution of atomic images increases with the incident energies. This is important for experiments of X-ray fluorescence holography, which is being developed on Shanghai Synchrotron Radiation Facility.
出处 《核技术》 EI CAS CSCD 北大核心 2008年第8期571-576,共6页 Nuclear Techniques
基金 国家自然科学基金(10505028)资助
关键词 X射线荧光全息术 孪生像 重构算法 同步辐射 X-ray fluorescence holography, Twin image, Reconstruction algorithm, Synchrotron radiation
  • 相关文献

参考文献17

  • 1Faigel G, Tegze M. Rep Prog Phys, 1999, 62:355-393 被引量:1
  • 2Szoke A. Short wavelength coherent radiation: Generation and Applications, edited by Atwood T, Boker J. AlP Conf Proc, 1986 147:361-367 被引量:1
  • 3Gog T, Len P M, Materlik G, et al. Phys Rev Lett, 1996,76(17): 3132-3135 被引量:1
  • 4Harp G R, Saldin D K, Tonner B R Phys Rev Lett, 1990, 65(8): 1012-1015 被引量:1
  • 5Tegze M, Faigel G Nature, 1996, 380: 49-51 被引量:1
  • 6Adams B,Novikov D V, Hiort T, et al. Phys Rev B, 1998, 57(13): 7526-7534 被引量:1
  • 7Tegze M, Faigel G, Marchesini S, et al. Phys Rev Lett, 1999, 82(24): 4847-4850 被引量:1
  • 8Marchesini S, Schmithtisen F, Tegze M, et al. Phys Rev Lett, 2000, 85(22): 4723-4726 被引量:1
  • 9Korecki P, Materlik G Phys Rev Lett, 2001, 86(11): 2333-2336 被引量:1
  • 10Tegze M, Faigel G, Marchesini S, et al. Nature, 2000, 407: 38 被引量:1

二级参考文献13

  • 1Barton J J 1988 Phys Rev Lett 61 1356 被引量:1
  • 2Lonsdale K 1968 International Tables for x-ray Crystallography (Dordrecht: Reidel) Vol Ⅲ. 被引量:1
  • 3Gabor D 1948 Nature 161 777 被引量:1
  • 4Baze V A 1952 Journal of the Optical Society of America A 42 756 被引量:1
  • 5Szoke A 1986 AIP Conf Proc 147 (API,New York) p361 被引量:1
  • 6Harp G R. Saldin D K and Tonner B P 1990 Phys Rev Lett 65.1012 被引量:1
  • 7Tegze M and Faigel G 1996 Nature 380 49 被引量:1
  • 8Adarns B, Novikov D V et al 1998 Phys Rev B 57 7526 被引量:1
  • 9Tegze M, Faigel G et al 1999 Phys Rev Lett 82 4847 被引量:1
  • 10Marchesini S et al 2000 Phys Rev Lett 85 4723 被引量:1

共引文献3

同被引文献201

引证文献2

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部