期刊文献+

崎岖地形动植物栖息地生态环境遥感制图与应用 被引量:1

Habitat Mapping in Rugged Terrain using IKONOS Satellite Images
下载PDF
导出
摘要 传统制图方法周期长、成本较高,影响了大面积精细动植物栖息地生态环境制图的生产。鉴此,本文采用IKONOS(VHR)图像对香港郊野公园崎岖地形的动植物栖息地生态环境制图进行了研究。由于香港植被的多样性,而且观察的动植物相互作用出现于结构的层面,所以对动植物栖息地的分类应以结构为基础而非以植物为基础。本文利用图像处理技术,运用决策树之多层次地物导向分割分类(MOOSC)方法绘制九种动植物栖息地类型图。MOOSC方法和其他现有的几种分类方法相比,其分类精度高、成本低。 Ecological mapping in the tropics is difficult due to the heterogeneity of the vegetation, the nature of the terrain which is often highly dissected, and general problem of determining ecological boundaries which may be indistinct, even to a field observer. There are no studies in the literature discussing the successful mapping of vegetation or habitats over large areas. In the last 20 years, two habitat surveys in the form of vegetation maps have been completed by Hong Kong government departments and private consultants, with inadequate accuracy and poor results. Since these previous projects used only medium spatial resolution sensors: Landsat and Satellite pour 1Observation de la Terre (SPOT) , it may be possible to produce more accurate ecological maps using the new generation of Very High Resolution (VHR) satellite sensor images.Traditionally, habitat mapping has used Aerial Photographic Interpretation (API). However, 45 air photos are required to cover the study area, Shing Mun and Tai Mo Shan country parks in Hong Kong, compared with a single IKONOS scene. Additional advantages of IKONOS include spatial, spectral and temporal consistency. Therefore, if a suitable methodology for automatic habitat mapping can be developed, reduced costs and less processing time would be required. This study attempts to develop a methodology for detailed ecological mapping based on a suite of integrated image processing techniques, and with stated accuracy levels, for IKONOS images - "Multi-scale object-oriented segmentation with decision tree classification" (MOOSC). The results show that 95% overall accuracy was achieved using API and 94% was achieved using MOOSC method when the results were referenced to GPS field data. These findings support the applicability and feasibility of MOOSC method, and it was only one third of the cost comparing with API.
出处 《地球信息科学》 CSCD 2008年第4期527-532,共6页 Geo-information Science
基金 香港特别行政区政府研究基金资助项目(GrantPolyU5166/03E)
关键词 动植物栖息地生态环境制图 IKONOS 结构分类 图像分割 Habitat mapping IKONOS structural classes segmentation
  • 相关文献

参考文献22

  • 1Ashworth J M, Corlett R T, Dudgeon D, Melville DS, Tang WSM. Hong Kong Flora and Fauna: Computing Conservation. World Wide Fund for Nature, 1993. 被引量:1
  • 2Walton DD. Northumberland National Park Phase one habitat survey. Report of survey results presented to NNPA and English Nature. Northumberland National Park report, Berwick-upon-Tweed, 1993. 被引量:1
  • 3Mehner H, Cutler M E J, Fairbairn D, Thompson G et al Remote sensing of upland vegetation : the potential of high spatial resolution satellite sensors. Global Ecology and Biogeography, 2004, 13 : 359 - 369. 被引量:1
  • 4香港环境保护署(Environmental Protection Department). Environmental Baseline Survey: Ranking Based on Conservation Value, 2003. 被引量:1
  • 5张翠萍,牛建明,董建军,刘朋涛,李秀萍,贾晋峰.植被制图的发展与现状[J].中山大学学报(自然科学版),2005,44(A02):245-249. 被引量:10
  • 6程维明,刘海江,张旸,周成虎,高群.中国1:100万地表覆被制图分类系统研究[J].资源科学,2004,26(6):2-8. 被引量:12
  • 7张翠萍,牛建明,董建军,李旻.基于IKONOS数据的植被制图与植被空间格局——以五分地沟试验区为例[J].生态学报,2006,26(2):449-456. 被引量:14
  • 8张翠萍,牛建明,董建军,李国梁.基于IKONOS的人工林地识别研究[J].中山大学学报(自然科学版),2007,46(3):93-97. 被引量:1
  • 9Brookes A M, Furse M T, Fuller R M. An assessment of the land cover map of Great Britain within headwater stream catchments for four river systems in England and Wales. R. Alexander and A Millington (eds,), Vegetation Mapping. Wiley, Chichester, 2000, 177 - 192. 被引量:1
  • 10Slater J, Brown R. Changing landscapes: Monitoring environmentally sensitive areas using satellite imagery. International Journal of Remote Sensing, 2000, 21:2753 - 2767. 被引量:1

二级参考文献17

  • 1颜梅春,张友静,鲍艳松.基于灰度共生矩阵法的IKONOS影像中竹林信息提取[J].遥感信息,2004,26(2):31-34. 被引量:42
  • 2张翠萍,牛建明,董建军,李旻.基于IKONOS数据的植被制图与植被空间格局——以五分地沟试验区为例[J].生态学报,2006,26(2):449-456. 被引量:14
  • 3Di Gregorio,A and Jansen,L. J.M,New FAO Land Cover Classification System(LCCS)[EB/OL].http://www.uea ac.uk/env/landresources/news-land-cover-classification.html,2004-08-10. 被引量:1
  • 4Wu Bo, Ci, Long-jun. Landscape change and desertification development in the Mu Us Sandland, Northern China[J], Journal of Arid Environment, 2002, 50:429 - 444. 被引量:1
  • 5KATOH M.Classifying tree species in a northern mixed forest using high-resolution IKONOS data[J].Journal Forest Research,2004,9(1):7-14. 被引量:1
  • 6CHESLEY M M,MINOR T B.Groundwater assessment using remote sensing and GIS in a rural groundwater project in GHANA:Lessons Learned[J].Hydrogeology Journal,1996,4(3):40-49. 被引量:1
  • 7苗宗义,李武世,金争平,等.黄土高原综合治理皇甫川流域水土流失..综合治理农林牧全面发展试验研究文集[C].北京:中国农业科技出版社,1992.1-10. 被引量:1
  • 8SCHOWENGERDT R A著,李德熊译.遥感图像处理与分类[M].北京:科学出版社,1991.53-55. 被引量:1
  • 9LILLESAND T M,KIEFER R W.遥感与图像解译[M].4版.彭望琭,余先川,周涛,等译.北京:电子工业出版社,2003:403-408. 被引量:1
  • 10中国农业百科全书总编辑委员会.中国农业百科全书-林业卷[M].北京:农业出版社,1989:478-479. 被引量:1

共引文献33

同被引文献12

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部