期刊文献+

应用多光谱数字图像识别苗期作物与杂草 被引量:12

Identification of crop and weed in seedling stage based on multi-spectral images
下载PDF
导出
摘要 通过对多光谱成像仪获得的数字图片,采用一定的目标分割与形态学处理,对豆苗和杂草进行识别判断.为解决识别速度与正确率的矛盾,以豆苗和杂草图像的识别为例,提出一种基于多光谱图像算法的杂草识别新方法.应用3CCD多光谱成像仪获取豆苗与杂草图像,以多光谱图像的近红外IR通道图像为基础,利用图像分割和形态学方法,将所有豆苗叶子影像提取出来.对于剩下的2种杂草(牛筋草,空心莲子草)图像,先利用图像分析工具统计出图像块的长度、宽度、面积等基本特征参数,并根据它们形状的不同,总结出两条简单的判别规则,进行进一步的识别.本试验对147个目标进行判断,其中误判14个,正确率为90.5%,表明该方法算法简单、计算量小、速度快,能够有效识别这2种杂草,为田间杂草的快速识别提供了一种新方法. As machine vision owns many merits, 3CCD multi-spectral camera was used to capture pictures of soybean and two common weeds (Alternanthera philoxeroides and Eleusine indica ). Based on the image from IR channel of multi-spectral images and the usage of segmentation and morphological processing, the soybean image could be extracted. Although the two weeds were similar in size and color, they differed from each other by shape. So, parameters like length, width, areas of the images were calculated and two simple rules were used to identify them. In the experiment of 147 goals, 14 were misjudged, and the correct recognition rate of the two weeds was 90.5 %. So, this method can be used to identify these two specific weeds from each other. As the soybean leaf size was much larger than that of weeds, it could be totally extracted and identified. The test results show that the new method is simple and fast to identify crop and weed in seedling stage.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2008年第4期418-422,共5页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 国家十一五"科技支撑计划资助项目(2006BAD10A09) 国家高技术研究发展计划863"资助项目(2007AA10Z210) 国家自然科学基金资助项目(30671213)
关键词 作物 杂草 多光谱成像 形态学 识别 crop weed multi-spectral image morphology identification
  • 相关文献

参考文献9

  • 1Borregaard T, Nielsen H, Norgaard L, et al. Cropweed discrimination by line imaging spectroscopy [J]. Journal of Agricultural Engineering Research, 2000, 75 (4) :389-400. 被引量:1
  • 2Petry W, Kuhbauch W. Automatic discrimination of weeds on the basis of shape parameters using quantitative image analyses [J]. Journal of Agronomy and Crop Science, 1989,163:345-351. 被引量:1
  • 3Guyer D E, Miles G E, Schreiber M M, et al. Machine vision and image processing for plant identification [J]. Transactions of the ASAE, 1986,29(6) :1500-1507. 被引量:1
  • 4毛文华,王一鸣,张小超,王月青.基于机器视觉的田间杂草识别技术研究进展[J].农业工程学报,2004,20(5):43-46. 被引量:28
  • 5毛文华 ,王一鸣 ,张小超 ,王月青 .基于机器视觉的苗期杂草实时分割算法[J].农业机械学报,2005,36(1):83-86. 被引量:44
  • 6Burgeth B, Bruhn A, Didas S, et al. Morphology for matrix data: ordering versus PDE-based approach[J]. Image and Vision Computing, 2007,25(4) : 496-511. 被引量:1
  • 7Bruno D V Marino, Paul Geissler, Brian O' Connell, et al. Multispectral imaging of vegetation at biosphere [J]. Ecological Engineering, 1999,13:321-331. 被引量:1
  • 8Kenneth R,朱志刚,等译,数字图像处理[M].北京:电子工业出版社,1999. 被引量:2
  • 9崔屹编著..图象处理与分析 数学形态学方法及应用[M].北京:科学出版社,2000:171.

二级参考文献30

  • 1Paice M E R,Miller P C H,Bodle J D.An experimental sprayer for the spatially selective application of herbicides [J]. Journal of Agricultural Engineering Research, 1995,60:107-116. 被引量:1
  • 2Guyer D E, Miles G E, Schreiber M M, et al. Machine vision and image processing for plant identification[J].Transactions of the ASAE, 1986,29(6): 1500-1507. 被引量:1
  • 3Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identification [J]. Transactions of the ASAE, 1993, 36(1):163-171. 被引量:1
  • 4Woebbecke D M, Meyer G E, Von Bargen K, et al.Shape features for identifying young weeds using image analysis[J]. Transactions of the ASAE, 199538(1):271-281. 被引量:1
  • 5YonekawaS, Sakai N, Kitani O. Identification of idealized leaf types using simple dimensionless shape factors by image anlysis[J]. Transactions of the ASAE,1996,39 (4): 1525- 1533. 被引量:1
  • 6FranzE, Gebhardt M R, Unklesbay K B. Shape description of completely visible and partially occluded leaves for identifying plants in digital images [J].Transactions of the ASAE, 1991,34(2): 673- 681. 被引量:1
  • 7Shearer S A, Holmes R G. Plant identification using color co-occurrence matrices [J]. Transactions of the ASAE,1990,33 (6): 2037 - 2044. 被引量:1
  • 8Meyer G E, Mehta T, Kocher M F, et al. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying[J]. Transactions of the ASAE, 1998,41(4):1189-1197. 被引量:1
  • 9Burks T F, Shearer S A, Gates R S. Backpropagation neural network design and evaluation for classifying weed species using color image texture[J]. Transactions of the ASAE, 2000,43(4):1029-1037. 被引量:1
  • 10Tang L, Tian F, Steward B L, et al. Texture based weed classification using gabor wavelets and neural network for real-time selective herbicide application[A].ASAE paper, 1997. Time selective herbicide application [J]. ASAE paper. St Joseph Mich, 1997. 被引量:1

共引文献70

同被引文献294

引证文献12

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部