期刊文献+

模糊自适应滤波在水下航行器组合导航系统中的应用 被引量:16

Application of fuzzy adaptive filter to integrated navigation system of underwater vehicle
下载PDF
导出
摘要 为了提高水下航行器组合导航系统精度和可靠性,针对水下航行器组合导航系统量测噪声统计特性随实际工作环境的不同而变化的特点,提出了基于模糊自适应联邦卡尔曼滤波的水下组合导航算法。通过监测理论残差与实际残差的协方差的一致程度,应用模糊系统不断调整滤波器的增益系数,对子滤波器进行在线自适应调整,从而实现导航状态的最优估计滤波。通过对联邦滤波器信息分配系数模糊自适应调整,减少了滤波计算量,提高了滤波实时性。软件仿真实验结果表明:模糊自适应滤波可以有效地提高水下航行器组合导航系统的精度和可靠性,提高导航滤波实时性,克服传统的滤波算法的缺点与不足。 To improve the navigation precision and stability of the underwater vehicle, a fuzzy adaptive federated Kalman filtering algorithm was proposed according to the statistical feature of the system measurement noise which varied with environments. By monitoring the coincidences of actual residual with the theoretical residual, the filter can be adapted automatically, and optimal filtering results can be obtained. Information sharing coefficients were adaptively adjusted, and the filtering time was decreased sharply and the real-time ability was greatly improved. The simulation experiments demonstrate that the fuzzy adaptive filter can improve the integrated navigation accuracy, stability and the filtering real-time ability, and overcome the shortcomings of the traditional filtering method.
出处 《中国惯性技术学报》 EI CSCD 2008年第3期320-325,共6页 Journal of Chinese Inertial Technology
基金 "十一五"总装备部预研项目(51309020503) "十一五"总装备部预研项目(51309060402) 国防973项目(973-61334) 国家自然科学基金项目(50575042) 教育部博士点专项科研基金项目(20050286026)
关键词 水下航行器 组合导航系统 模糊自适应 联邦卡尔曼滤波 underwater vehicle integrated navigation system fuzzy adaptive federated Kalman filter
  • 相关文献

参考文献8

二级参考文献17

  • 1房建成,李学恩,申功勋.INS/CNS/GPS智能容错导航系统研究[J].中国惯性技术学报,1999,7(1):7-10. 被引量:10
  • 2万振刚,周百令,马云峰,黄丽斌,顾春杰.自适应联合H_∞滤波器及其在组合导航系统中的应用[J].东南大学学报(自然科学版),2004,34(5):623-626. 被引量:5
  • 3卞鸿巍,金志华,田蔚风.组合导航智能信息融合自适应滤波算法分析[J].系统工程与电子技术,2004,26(10):1449-1452. 被引量:9
  • 4许丽佳,陈阳舟,崔平远.组合导航系统的模糊信息融合[J].系统仿真学报,2005,17(1):124-128. 被引量:13
  • 5[3]Boutayed M,Rafaralahy H,Darouach M.Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems[J].IEEE Transactions on Automatic Control,1997,42:581-586 被引量:1
  • 6[4]Vik B,Fossen T I.A nonlinear observer for integration of GPS and INS attitude[C]// Proceedings of the 12th International Technology Meeting of the Satellite Division of the Institute of Navigation.Nashville TN,Sept,14 ~ 17,1999:2027-2031 被引量:1
  • 7Escam illa-Ambrosio P J, Mport N. Multiseusor Data Fusion Architecture Based on Adaptive Kalman Filters and Fuzzy Logic Performance Assessment. Proceedings of the Fifth Intemational Conference on Information Fusion, FUSION 2002. Annapolis, USA,July 2002, 2:1542- 1549. 被引量:1
  • 8Sasiakek J Z, Wang Q, Zeremba M B. Fuzzy Adaptive Kalman Filtering For INS/GPS Data Fusion. Proceedings of the 15th IEEE Intelligent Control, Rio, Patras, GREECE. July , 2000, 17- 19:181 - 186. 被引量:1
  • 9王士同.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科学技术文献出版社,2003. 被引量:1
  • 10刘郁林,景晓军,等(译).自适应滤波算法与实现[M].北京:电子工业出版社,2004. 被引量:9

共引文献75

同被引文献116

引证文献16

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部