期刊文献+

具离散时滞的扩散Musca domestica苍蝇模型的波前解 被引量:1

Travelling Wave Fronts for the Diffusive Musca Domestica Houseflies Model with Discrete Delay
下载PDF
导出
摘要 本文考虑了一类具离散时滞的扩散Musca domestica苍蝇模型,利用上、下解方法及单调迭代技巧得到了这类模型波前解存在的充分条件。结果表明,当时滞充分小时,该模型连结两一致静态解的波前解仍能得以保持。 A type of diffusive Musca domestica houseflies models with discrete delay are concerned in this paper. By employing the upper-lower solution method and monotone iteration technique, sufficient conditions for the existence of traveling wave fronts for the above model are obtained. The results show that the traveling wave fronts connecting two uniform steady states of the model will persist when the delay is sufficiently small.
作者 邓习军
出处 《工程数学学报》 CSCD 北大核心 2008年第4期651-658,共8页 Chinese Journal of Engineering Mathematics
基金 长江大学科研发展基金(20061222)
关键词 波前解 上下解 Musca domestica苍蝇模型 traveling wave front upper-lower solution diffusive Musca domestica houseflies model
  • 相关文献

参考文献5

  • 1taylor C E, Sokal R R. Oscillations in housefly population sizes due to time lags[J]. Ecology, 1976, 57: 1060-1067 被引量:1
  • 2Ruan S. Delay differential equations in single species dynamics[C]// Delay Differential Equations with Applications, NATO Advanced Study Institute, 2004 被引量:1
  • 3Wu J. Theory and Applications of Partial Functional Differential Equations[M]. New York: Springer-Verlag, 1996 被引量:1
  • 4Fife P C. Mathematical Aspects of Reaction and Diffusion Systems [M]. Lecture Notes in Biomathematics, Vol. 28, Springer-Verlag, Berlin, 1979 被引量:1
  • 5Wu J, Zou X. Traveling wave fronts of reaction diffusion systems with delay[J]. Journal of Dynamics and Differential Equations, 2001, 13:651-687 被引量:1

同被引文献8

  • 1邓习军.具时空时滞的扩散Musca domestica苍蝇模型的波前解[J].长江大学学报(自科版)(上旬),2006,3(3):6-9. 被引量:1
  • 2Taylor C E, Sokal R R. Oscillations in Housefly Population Sizes Due to Time Lags[ J]. Ecology, 1976, 57:1060. 被引量:1
  • 3Wu J: Theory and Applications of Partial Functional Differential Equations[ M]. New York: Springer- Verlag, 1996. 被引量:1
  • 4Murray J D. Mathematical Biology [ M]. New York : Springer - Verlag, 1989. 被引量:1
  • 5Fife P C. Mathematical Aspects of Reaction and Diffusion Systems [ M]. Berlin :Lecture Notes in Biomathematics, 1979. 被引量:1
  • 6Fenichel N. Geometric Singular Perturbation Theory for Ordinary Differential Equations [ J ]. J Differential Eqs, 1979, 31:53. 被引量:1
  • 7Fu Y, Liu Z. Persistence of Travailing Fronts of Kdv- Buramoto Equation[ J]. Appl Math Comput, 2010,216:2199. 被引量:1
  • 8Yuliya N Kyrychko, Konstantin B Blyuss. Persistence of Traveling Waves in a Generalized Fisher Equation [ J ]. Physics Letter A, 2009373:668. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部