期刊文献+

特定数据最大频繁集挖掘算法 被引量:3

Mining Algorithm of Maximal Frequent Itemsets Suitable to Specific Database
下载PDF
导出
摘要 针对在某些限定项目数与交易长度数据的关联规则挖掘中FP-growth算法执行效率很低的问题,提出一种最大频繁模式挖掘算法,该算法引入与FP-tree结构类似的All-subsettree存储所有的最大频繁项目集,无需在扫描数据库前指定最小支持度,可以动态给定最小支持度而不用重新扫描数据库。实验结果表明,该算法在这些特定数据的挖掘中,与FP-growth相比明显提高了挖掘效率。 Aiming at the low mining efficiency problem existing in the mining association rules of FP-growth algorithm on data limited with item counts and transaction length, an improved algorithm(All-subset tree) for mining maximal frequent patterns is proposed, a novel data structure, All-subset tree, which is similar to FP-tree is introduced to store all maximal frequent item sets. The algorithm is in no need of appointed minimum support before scanning the database, and need not rescan the database when assigned minimum support dynamically. Experimental results show that all-subset tree algorithm greatly improves the mining efficiency compared with FP-growth algorithm when mining specific database.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第14期63-65,共3页 Computer Engineering
基金 安徽医科大学科学研究基金资助项目(2006kj28)
关键词 数据挖掘 关联规则 频繁模式树 最大频繁项目集 data mining association rule Frequent Pattern tree(FP-tree) maximal frequent itemsets
  • 相关文献

参考文献6

二级参考文献19

  • 1Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: High Education Press, 2001. 被引量:1
  • 2Agrawal R, ImielinSki T, Swami A. Mining association rules between sets of items in large database. In: Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Vol 2, Washington DC: SIGMOD, 1993. 207-216. 被引量:1
  • 3Agrawal, R Srikant. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. Very Large Data Bases(VLDB'94). 1994.487-499. 被引量:1
  • 4Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proc. of the 2000 ACM-SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 1-12. 被引量:1
  • 5Bayardo RJ. Efficiently mining long patterns from databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf.on Management of Data. New York: ACM Press, 1998.85-93. 被引量:1
  • 6Lin D, Kedem ZM. Pincer-Search: A new algorithm for discovering the maximum frequent set. In: Proc. of the 6th European Conf.on Extending Database Technology. Heidelberg: Springer-Verlag, 1998. 105-119. 被引量:1
  • 7Park JS, Chen MS, Yu PS. Efficient parallel data mining for association rules. In: Proc. of the 4th Int'l Conf. on Information and Knowledge Management. 1995. 31-36. 被引量:1
  • 8Agrawal R, Shafer J. Parallel mining of association rules. IEEE Trans. on Knowledge and Data Engineering, 1996,8(6):962-969. 被引量:1
  • 9Cheung DW, Han JW, Ng VT. A fast distributed algorithm for mining association rules. In: Proc. of the IEEE 4th Int'l Conf.Parallel and Distributed Information Systems. Miami Beach: IEEE Press, 1996. 31-44. 被引量:1
  • 10Cheung DW, Lee SD, Xiao YQ. Effect of data skewness and workload balance in parallel data mining. IEEE Trans. on Knowledge and Data Engineering, 2002,14(3):498-514. 被引量:1

共引文献237

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部