期刊文献+

基于SQL数据库的过程数据压缩方法 被引量:18

Process Data Compression Method Based on SQL Database
下载PDF
导出
摘要 利用SQLServer数据库存储过程历史数据,提出一种增量型的SDT压缩算法,有效地实现了过程历史数据的实时存储。对于通过OPC方式从化工过程底层读取的实时数据,利用增量型的SDT算法进行实时压缩存储,利用LZW算法对存储的值进行二次无损压缩。实验测试表明,该方法能够实时处理大量的过程数据,同时尽最大可能对过程数据进行压缩,降低存储成本。在容差为1%、测点为1000个时,该算法使平均压缩率达到约85%。 This paper presents incremental Swinging Door Trending(SDT) algorithm of historical data based on SQL Server database. For the real-time process data obtained by the OLE for Process Control(OPC), it is compressed by using the incremental SDT algorithm, and the LZW (Lempel-Ziv-Welch) algorithm is adopted for the storage value in the second-level lossless compression. Experimental results show that it can deal with the large process data on line, and at the same time it can reach the utmost compression ratio for the process history data. This storage method can also reduce the storage cost. For the 1 000 data points in one petrochemical factory, the average compression ratio can reach 85% with incremental SDT when the compression tolerance is set to 1%.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第14期58-59,62,共3页 Computer Engineering
关键词 过程数据压缩 增量型SDT算法 LZW算法 process data compression incremental SDT algorithm LZW algorithm
  • 相关文献

参考文献7

二级参考文献32

  • 1[1]Rosenzweig P, Kadansky M, Hanna S. The Java Reliable Multicast Service: A Reliable Multicast Library . Sun Labs, 1997 被引量:1
  • 2[2]Burrows M,Weeler D J.A Block-sorting Lossless Data Compression Algorithm. 1994-05-10 被引量:1
  • 3[3]Horpool R N,Cormack G V.Constructing Word-based Text Compression Algorithms, 1999 被引量:1
  • 4[4]Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Journal of Knowledge and Information Systems, 2000 被引量:1
  • 5[5]Shatkay H. Approximate Queries and Representations for Large Data Sequences. Technical Report , Department of Computer Science,Brown University, 1995 被引量:1
  • 6[6]Shatkay H, Zdonik S. Approximate Queries and Representations for Large Data Sequences. Proceedings of the 12th IEEE International Conference on Data Engineering, 1996 被引量:1
  • 7[7]Keogh E, Pazzani M. An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback. Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining, 1998 被引量:1
  • 8[8]Li C, Yu P, Castelli V. MALM: A Framework for Mining Sequence Database at Multiple Abstraction Levels. Proceedings of the 9th International Conference on Information and Knowledge Management,1998 被引量:1
  • 9[9]Wang C, Wang S. Supporting Content-based Searches on Time Series via Approximation. Proceedings of the 12th International Conference on Scientific and Statistical Database Management, 2000 被引量:1
  • 10[10]Park S, Lee D, Chu W W. Fast Retrieval of Similar Subsequences in Long Sequence Databases. Proceedings of the 3rd IEEE Knowledge and Data Engineering Exchange Workshop, 1999 被引量:1

共引文献40

同被引文献83

引证文献18

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部