期刊文献+

基于RBF网络的工程保险费率厘定研究 被引量:14

The research for engineering insurance rate calculation based on the RBF neural networks
原文传递
导出
摘要 目前,在我国的工程保险费率(EIR)厘定中,一般采用固定费率表来确定保险费率.近年有人提出基于风险系数调整来厘定费率,主要依赖专家经验,采用了层次分析法(AHP)和模糊综合评价(FCE).为了更客观地确定工程保险费率,本文根据工程保险费率的厘定原理,引入RBF神经网络方法来进行风险分析,建立一种基于RBF网络的工程保险费率确定模型,可直接得出纯费率,为保险公司工程保险费率厘定提供参考工具. At present, professionals usually used the fixed rate-table to calculate the engineering insurance rate (EIR) about EIR's calculation in China. In Recent years, some professionals proposed a method combined AHP and FCE methods to calculate the EIR, which was based on adjusting the coefficients of risk and depended on the experiences of experts. To calculate the EIR more objectively, the author proposes a creative method based on RBF neural networks to calculate the pure insurance rate based on the theory of EIR, and it can directly get the pure insurance rate by this method. The paper also provides a referential calculation toolkit for EIR's calculation to insurance company.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第7期169-172,共4页 Systems Engineering-Theory & Practice
基金 重庆市哲学社会科学规划重点项目(2006-JJ02)
关键词 工程保险 保险费率 RBF(径向基函数) engineering insurance insurance rote RBF(radial basis function)
  • 相关文献

参考文献10

  • 1Dwight M Jaffee, Thomas Russell. Catastrophe insurance [J]. The Journal of Risk and Insurance, 1997:66 - 70. 被引量:1
  • 2Williams C A, Heins R M. Risk Management and Insurance[M]. New York: McGraw-Hill, 1985. 被引量:1
  • 3孙智著..工程保险[M].北京:中国三峡出版社,2000:264.
  • 4边肇祺编著..模式识别[M].北京:清华大学出版社,1988:292.
  • 5阮小钢.神经计算科学[M].北京:国防工业出版社,2006. 被引量:1
  • 6Ampazis N, et al. Two highly efficient second-order algorithms for training feedforward networks[J]. IEEE Trans NN, 2003, 13 (5) : 1064- 1074. 被引量:1
  • 7Alexandridis A, et al. A new algorithm for online structure and parameter adaptation of RBF networks[ J]. Neural Networks,2003, 16:1003 - 1017. 被引量:1
  • 8Mavinaro M, et al. On line learning in RBF NN, a stochastic approach[J]. Neural Networks, 2000, 13: 719- 729. 被引量:1
  • 9Chen S, et al. Orthogonal least square learning algorithm for RBF networks[J]. IEEE Trans NN, 1991, 2: 302- 309. 被引量:1
  • 10Freenan J A, et al. Online learning in RBF networks[J]. Neural Computation, 1997, 9:1601 - 1622. 被引量:1

同被引文献111

引证文献14

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部