期刊文献+

有限元新型自然坐标方法研究进展 被引量:5

ADVANCES IN NEW NATURAL COORDINATE METHODS FOR FINITE ELEMENT METHOD
下载PDF
导出
摘要 网格畸变敏感问题一直是当前有限元法难以解决的问题,而新型自然坐标方法的诞生可以在一定程度上对解决这个难题有所帮助。该文介绍了有限元新型自然坐标方法研究的新近进展。包括第一类四边形面积坐标及其应用(单元构造,解析刚度矩阵的建立,以及在几何非线性问题中的应用等);第二类四边形面积坐标及其应用;六面体体积坐标及其应用。数值算例表明:无论网格如何扭曲畸变,这些基于新型自然坐标方法的有限元模型仍然保持高精度,对网格畸变不敏感。这显示了新型自然坐标方法是构造高性能单元模型的有效工具。 The sensitivity problem to mesh distortion is a challenging difficulty in the field of the fininet method. Recently, some new natural coordinate methods have been successfully established for developing robust finite element models. They provide possible ways to overcome the problem. This paper introduces some newest advances in the research on this area, including the quadrilateral area coordinate method of type I and its applications (construction of finite element model, establishment of analytical element stiffness matrix, and application in geometrically nonlinear problem); the quadrilateral area coordinate method of type II and its application; and the hexahedral volume coordinate method and its applications. Numerical examples show that element models formulated by these new natural coordinate systems are quite insensitive to various mesh distortions. It demonstrates that these new natural coordinate methods are powerful tools for constructing high-performance hexahedral finite element models.
出处 《工程力学》 EI CSCD 北大核心 2008年第A01期18-32,共15页 Engineering Mechanics
基金 国家自然科学基金项目(10502028) 高等学校全国优秀博士论文作者专项基金项目(200242) 教育部新世纪优秀人才支持计划项目(NCET-07-0477)
关键词 有限元 新型自然坐标 四边形面积坐标 六面体体积坐标 网格畸变 finite element new natural coordinate method quadrilateral area coordinate method hexahedral volume coordinate method mesh distortion
  • 相关文献

参考文献53

  • 1Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics [M]. 6th Edition. Oxford: Elsevier Butterworth-Heinemann, 2005. 被引量:1
  • 2Lee N S, Bathe K J. Effects of element distortion on the performance of isoparametric elements [J]. International Journal for Numerical Methods in Engineering, 1993, 36: 3553 -3576. 被引量:1
  • 3龙驭球,李聚轩,龙志飞,岑松.四边形单元面积坐标理论[J].工程力学,1997,14(3):1-11. 被引量:29
  • 4龙志飞,李聚轩,岑松,龙驭球.四边形单元面积坐标的微分和积分公式[J].工程力学,1997,14(3):12-20. 被引量:16
  • 5Long Y Q, Li J X, Long Z F, Cen S. Area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 533- 545. 被引量:1
  • 6Long Z F, Li J X, Cen S, Long Y Q. Some basic formulae for Area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(12): 841-852. 被引量:1
  • 7Long Y Q, Long Z F, Cen S. Method of area coordinate-from triangular to quadrilateral elements [J]. Advances in Structural Engineering, 2001, 4(1): 1 - 11. 被引量:1
  • 8Long Y Q, Cen S, Long Z F. Generalized conforming element (GCE) and quadrilateral area coordinate method (QACM) [C]// Yao Z H, Yao M W, Zhong W X. Proceedings of the Sixth World Congress on Computational Mechanics in conjunction with the Second Asian-Pacific Congress on Computational Mechanics, Beijing, China: Tsinghua University Press & Springer, 2004:462-467. 被引量:1
  • 9龙志飞,岑松著..广义协调元理论与四边形面积坐标方法[M].徐州:中国矿业大学出版社,2001:224.
  • 10龙驭球等著..新型有限元论[M].北京:清华大学出版社,2004:559.

二级参考文献93

共引文献71

同被引文献81

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部