期刊文献+

面向结构健康监测的神经网络性能分析与设计 被引量:2

ANALYSIS AND DESIGN OF SHM-ORIENTED NEURAL NETWORKS
下载PDF
导出
摘要 面向结构健康监测,对神经网络的工作性能从概率角度给予细致分析,区分了网络工作的两类典型错误。发现了影响网络工作性能的3个参数,并且指出随着时间的推移,3个参数对网络工作性能有着不同的影响。基于上述分析提出了面向长期结构健康监测的神经网络"错误抑制策略",可以根据结构健康监测的要求来灵活抑制两类错误。最后将该策略应用于BP网络设计,重新定义了网络误差能量函数,给出了错误抑制系数的建议公式,推导了网络学习的权值修正公式。 The performance of neural networks applied in structural health monitoring(SHM) is carefully discussed by using probability tool. Then two types of errors of the network are distinguished. And the further study shows that there are 3 parameters that can influence the performance of the network and the influence varies with the structural serving time. A SHM-oriented mistake curbing strategy is presented to agilely curb the two types of errors on demand of SHM. Then it is applied in designing Back-Propagation neural network. The new error energy function is defined and the way setting the value of mistake curbing coefficient is suggested in the consideration of long time monitoring. Further more, the weight updating rule is derived.
出处 《工程力学》 EI CSCD 北大核心 2008年第7期74-78,共5页 Engineering Mechanics
基金 国家自然科学基金(50378017) 国家863基金(2006AA04Z416) 南航青年科研基金(Y0513-013)
关键词 健康监测 损伤识别 神经网络 性能分析 错误抑制 BP算法 health monitoring damage detection neural networks performance analysis mistake curbing BP algorithm
  • 相关文献

参考文献21

  • 1Hagan M T, Howard B D, Mark Beale. Neural network design [M]. USA: PWS Publishing Company, 1996. 被引量:1
  • 2Wu X, Ghaboussi J, Garrett J H. Use of neural networks in detection of structural damage [J]. Computers & Structures, 1992, 42(4): 649-659. 被引量:1
  • 3Elkordy M F, Chang K C, Lee G C. Application of neural networks in vibrational signature analysis [J]. Journal of Engineering Mechanics, 1994, 120(2): 251-264. 被引量:1
  • 4Masri S F, Chassiakos A G, Caughey T K. Neural network approach to detection of changes in structural parameters [J]. Journal of Engineering Mechanics, 1996, 122(4): 350-360. 被引量:1
  • 5Pandey P C, Barai S V, Barai. Multilayer perceptron in damage detection of bridge structures [J]. Computers & Structures, 1995, 54(4): 597-608. 被引量:1
  • 6Barai S V, Pandey P C. Vibration signature analysis using artificial neural networks [J]. Journal of Computing in Civil Engineering, 1995, 9(4): 259-265. 被引量:1
  • 7Yun C B, Bahng E Y. Substructural identification using neural networks [J]. Computers & Structures, 2000, 77(1): 41-52. 被引量:1
  • 8Ko J M, Sun Z G, Ni Y Q. Multistage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge [J]. Engineering Structures, 2002, 24: 857-868. 被引量:1
  • 9Ni Y Q, Wang B S, Ko J M. Constructing input vectors to neural networks for structural damage identification [J]. Smart Materials and Structures, 2002, 11: 825-833. 被引量:1
  • 10Xu B, Wu Z S, Yokoyama K. Response time series based structural parametric assessment approach with neural networks [C]. Proc. 1st Int. Conf. on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, Japan, 2003, 1: 601-610. 被引量:1

二级参考文献24

  • 1Sima Yuzhou.DAMAGE DETECTION IN STRUCTURES USING MODIFIED BACK-PROPAGATION NEURAL NETWORKS[J].Acta Mechanica Solida Sinica,2002,15(4):358-370. 被引量:6
  • 2徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12. 被引量:44
  • 3Worden K. Structural fault detection using a novelty measure [J] . Journal of Sound and Vibration 1997, 201 : 85 - 101. 被引量:1
  • 4Chen, T H T, Ni, Y Q, and Ko, J M. Neural network novelty filtering for anomaly detection of Tsing Ma Bridge cables [A]. Structural health monitoring 2000 [C], Pennsylvania: Technomic Publishing Co., Iancaster, 2000: 430-439. 被引量:1
  • 5Ko, J M, Ni Y Q, Zhou, X T, and Wang, J Y. Structural damage alarming in Ting Kau Bridge using auto - associative neural networks [A]. Advances in structural dynamics [C], Elsevier Sience Ltd., 2000, 2. 1021 - 1028. 被引量:1
  • 6Masri S F, et al. Identification of nonlinear dynamic systems using neural networks[J]. J App Mech,1993,60: 123-133. 被引量:1
  • 7Zhu H P. The modal parameters identification of large-span bridge based on SFT[A]. The Third Chinese Symposium on Structural Vibration Control[C]. December 8-12, Shanghai, China. 被引量:1
  • 8Elkordy M F, Chang K C, Lee G C. Application of Neural Networks in Vibrational Signature Analysis[J]. Journal of Engineering Mechanics, 1994, 120(2): 251~264 被引量:1
  • 9Rhim J, Lee S W. A Neural Network Approach for Damage Detection and Identification of Structures[J]. Computational Mechanics, 1995, 16(6): 437~443 被引量:1
  • 10Pandy P C, Barai S V. Multilayer Perceptron in Damage Detection of Bridge Structures[J]. Computers & Structures, 1995, 54(4): 597~608 被引量:1

共引文献99

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部