期刊文献+

求解最优潮流问题的内点半定规划法 被引量:26

Solution of Optimal Power Flow Problems by Semi-definite Programming
下载PDF
导出
摘要 基于内点半定规划(semi-definite programming,SDP),提出一种求解最优潮流(optimal power flow,OPF)的新方法——SDP-OPF法。该方法将非凸OPF问题等价转换为半定规划问题,然后应用原始–对偶内点法求解。根据OPF半定规划模型的特点,采用基于半定规划的稀疏技术,使存储效率和计算性能得以大幅度提高。以4节点的简单电力系统为例,展示模型等价转换的过程及如何获取原OPF问题的解。IEEE-300节点等6个标准系统的仿真计算表明:所提算法具有超线性收敛性,其计算结果与内点非线性规划的结果一致,且能保证解的全局最优性,可在多项式时间内完成,是一种应用前景广阔的方法。 A new method using semi-definite programming (SDP) to solve optimal power flow (OPF) problems was presented. Named as SDP-OPF, the proposed method involves reformulating the OPF problem into a SDP model, which is a convex problem, and developing an interior point method (IPM) for SDE Furthermore, the SDP sparsity technique can greatly improve the efficiency of storage and computing. A simple 4-bus power system was employed to explain the implementation process, which includes converting the OPF problem to the SDP model and mapping the results of SDP's to the OPF solutions. Extensive numerical simulations show that the results by SDP-OPF are the same as by NLP-OPE SDP-OPF has the super-linear convergence, and it can guarantee the global optimal solutions within the polynomial times. Therefore, the study for SDP-OPF offers a good prospect.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第19期56-64,共9页 Proceedings of the CSEE
基金 国家自然科学基金项目(50467001) 国家高校博士学科点专项科研基金项目(20060593002) 广西教育厅科研项目(桂教科研[2004]20)~~
关键词 最优潮流 半定规划 内点法 稀疏技术 optimal power flow semidefinite programming interior point method sparsity technique
  • 相关文献

参考文献26

  • 1Momoh J A, Koessler R J, Bond M S, et al. Challenges to optimal power flow[J]. IEEE Transactions on Power Systems, 1997, 12(1): 444-455. 被引量:1
  • 2赵晋泉,侯志俭,吴际舜.改进最优潮流牛顿算法有效性的对策研究[J].中国电机工程学报,1999,19(12):70-75. 被引量:28
  • 3Wei H, Sasaki H, Yokoyama R. An application of interior point quadratic programming algorithm to power system optimization problems[J]. IEEE Transactions on Power Systems, 1996, 11(1): 260-267. 被引量:1
  • 4Quintana v H, Torres G L, Medina-palomo J. Interior-point methods and their applications to power systems: a classification of publications[J]. IEEE Transactions on Power Systems, 2000, 15(1): 170-176. 被引量:1
  • 5韦化,李滨,杭乃善,刘东平,文杰,佐佐木博司.大规模水火电力系统最优潮流的现代内点理论分析[J].中国电机工程学报,2003,23(4):5-8. 被引量:34
  • 6Jabr R A. A primal-dual interior-point method to solve the optimal power flow dispatching problem[J]. Optimization and Engineering, 2003, 4(4): 309-336. 被引量:1
  • 7Adler I, Alizadeh F. Primal-dual interior point algorithms for convex quadratically constrained and semidefinite optimization problems [R]. New Brunswick, NJ: Rutcor, Rutgers University, 1995. 被引量:1
  • 8Todd M J. Semidefinite optimization[J]. Acta Numerica, 2001, 10( 1): 515-560. 被引量:1
  • 9Wolkowicz H. Handbook of applied optimization[M]. New York: Oxford University Press, 2001. 被引量:1
  • 10Parrilo P. Semidefinite programming relaxations and algebraic optimization in control[J]. European Journal of Control, 2003, 9(1): 307-321. 被引量:1

二级参考文献18

  • 1郝玉国,张靖,于尔铿,刘广一.最优潮流的实用化研究[J].中国电机工程学报,1996,16(6):388-391. 被引量:18
  • 2Wu Yuchi, Debs A S,. Marsten R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows[J] IEEE Trans on Power Systems, 1994,9(2): 876-883. 被引量:1
  • 3Momoh J A, Koessler R J, Bond M S, et al. Challenges to optimal power flow [C]. 96 WM 312-9 PWRS, IEEE/PES, Baltimore, MD.January 21-25, 1996. 被引量:1
  • 4Wei H, Sasaki H, Yokoyama R. An application of interior point quadratic programming algorithm to power system optimization problems[J]. IEEE Trans on Power Systems,1996,11(1): 260-267. 被引量:1
  • 5Wei H, Sasaki H, Kubokawa J, et al. A interior point nonlinear programming for optimal power flow problems with a novel data structure[J].IEEE Trans on Power Systems, 1998,13(3): 870-877. 被引量:1
  • 6El-Hawary M E, et al. Hydro-thermal power flow scheduling accounting for head variations[J]. IEEE Trans on Power System,1992,7(3):1232-1238. 被引量:1
  • 7E1-Bakry A S, Tapai R A, On the formulation and theory of the Newton interior point method for nonlinear programming[J]. Journal of Opt. Theory and Applications, 1996,89(3): 507-541. 被引量:1
  • 8Alsca O, Bright J, Prais M, et al. Further Developments in LP-Based Optimal Power Flow [J].IEEE Trans. on Power System, 1990, 5(3):697-711. 被引量:1
  • 9Deeb N I, Shahidehpour S M, A decomposition approach for minimizing real power losses in power system [J]. IEE Proceedings,Part C, 1991, 138(1); 27-38. 被引量:1
  • 10Granville S. Optimal wreactive dispatch through interior point methods[J]. IEEE Trans on Power Systems, [J] 1994,9( 1 ): 136-146. 被引量:1

共引文献60

同被引文献441

引证文献26

二级引证文献324

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部