摘要
用代数数论的有关工具,找到了一类Q上四次代数整数±p^(1/2)±q^(1/2),确定并证明了它们的极小多项式是[x2-(p+q)]2-4pq,其正规闭包有4个实嵌入且没有复嵌入.
The paper uses the tools about algebraic number theory to find a class of quartic algebraic integer ±√p±√q,then,it is determined and proved that their minimal polynomial is [x^2-(p+q)]^2- 4pq, and in their normal closure, there are four real inserts and no complex inserts.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期31-32,共2页
Journal of Henan Normal University(Natural Science Edition)
基金
贵州省教育厅自然科学基金(20070016)
关键词
代数整数
正规闭包
实嵌入
首1多项式
algebraic integer
normal closure
real insert
monic polynomial