期刊文献+

死亡强度服从Ornstein-Uhlenbeck跳过程的长寿债券定价模型 被引量:8

Longevity Bonds Pricing Model Driven by Ornstein-Uhlenbeck Jump Process of Death Intensity
下载PDF
导出
摘要 长寿风险不仅使寿险公司和社会保障部门不堪重负,而且对经济和社会的发展产生严重威胁。以对冲长寿风险为目的,根据我国国情设计一种长寿债券,与债券相关联的生存指数是通过Ornstein-Uhlenbeck跳(OUj)过程刻画的死亡强度得到的。考虑到我国利率市场和保险市场的特点,利用正双曲利率模型对债券进行贴现,并通过王氏变换给出不完全市场中的长寿债券定价模型。最后,依据我国生命表数据进行实证研究。 Longevity risk not only overburdens insurers and social security departments, but also threats the development of economy and society. In order to hedge the risk of longevity, this article proposes to design longevity bonds according to the situation of our country. Ornstein-Uhlenbeck process with jumps is used to model the death intensity to get a survival index. Considering characteristics of interest rate market and insurance market, the interest rate is described with positive hyperbolic model, and Wang transform is used to price the bond in the incomplete market. Finally, empirical study is conducted with data of Chinese life table.
出处 《系统管理学报》 北大核心 2008年第3期297-302,共6页 Journal of Systems & Management
基金 教育部新世纪优秀人才支持计划(2005年) 国家自然科学基金资助项目(70771018) 教育部人文社会科学基金资助项目(05JA630005)
关键词 长寿债券 Ornstein-Uhlenbeck跳过程 正双曲模型 王氏变换 蒙特卡罗模拟 longevity bonds Ornstein-Uhlenbeck process with jumps positive hyperbolic model Wang transform Monte Carlo simulation
  • 相关文献

参考文献12

  • 1[1]Blake D,Burrows W.Survivor bonds,helping to hedge mortality risk[J].Journal of Risk and Insurance,2001,68:339-348. 被引量:1
  • 2[2]Lin Y,Cox S H.Securitization of mortality risks in life annuities[J].Journal of Risk and Insurance,2005,72(2):227-252. 被引量:1
  • 3[3]Andrew J G Cairns,David Blake,Kevin Dowd.A two-facter model for stochastic mortality with parameter uncertainty,theory and calibration[J].The Journal of Risk and Insurance,2006,73(4):687-718. 被引量:1
  • 4余伟强.长寿风险的证券化探索[J].复旦学报(自然科学版),2006,45(5):664-669. 被引量:14
  • 5[5]Michel Denuit,Pierre Devolder,Anne-C閏ile Goderniaux.Securitization of longevity risk:pricing survivor bonds with Wang transform in the Lee-Carter framework[J].The Journal of Risk and Insurance,2007,74(1):87-113. 被引量:1
  • 6[6]David Lando.Credit risk modeling:theory and application[M].Princeton University Press,2004. 被引量:1
  • 7[7]Duffle D,Singleton K J.Credit risk[M].Princeton University Press.2003. 被引量:1
  • 8[8]Duffle D,Pan J,Singleton K.Transform analysis and asset pricing for affine jump-diffusions[J].Eeonometrica,2000,68:1343-1376. 被引量:1
  • 9潘冠中,马晓兰.应该用哪一个模型来描述中国货币市场利率的动态变化[J].数量经济技术经济研究,2006,23(12):54-63. 被引量:11
  • 10[10]Wang S S.A class of distortion operators for pricing financial and insurance risks[J].Journal of Risk and Insurance,2000,67:15-36. 被引量:1

二级参考文献20

共引文献23

同被引文献74

  • 1胡素华,张世英,张彤.双指数跳跃扩散模型的McMC估计[J].系统工程学报,2006,21(2):113-118. 被引量:25
  • 2余伟强.长寿风险的证券化探索[J].复旦学报(自然科学版),2006,45(5):664-669. 被引量:14
  • 3Papalia R B. A composite generalized cross-entropy formulation in small samples estimation[ J]. Econometric Reviews, 2008, 27(4-6) : 596-609. 被引量:1
  • 4Chib S, Nardari F, Shephard N. Markov chain monte carlo methods for stochastic volatility models[ J]. Journal of Econometrics, 2002, 108(2) : 281-316. 被引量:1
  • 5Raggi D. Adaptive MCMC methods for inference on affine stochastic volatility models with jumps[ J]. Econometrics Journal, 2005, 8(2): 235-250. 被引量:1
  • 6Lee S S, Mykland P A. Jumps in financial markets: a new nonparametric test and jump[J]. Review of Financial Studies, 2007. 被引量:1
  • 7Duffle D, Kan R. A yield model of Interest rates[J]. Mathematical Finance, 1996, 6: 379-406. 被引量:1
  • 8Jacquier E, Poison N, Rossi P. Bayesian analysis of stochastic volatility models[ J]. Journal of Business & Economic Statistics, 1994, 12: 371-417. 被引量:1
  • 9Kau J B, Keenan, D C, Smurov A A. Reduced form mortgage pricing as an alternative to option-pricing models[ J]. Journal of Estate Finance Economic, 2006, 33: 183-196. 被引量:1
  • 10Kau J B, Keenan D C, Smurov A A. Reduced-form mortgage valuation [ R]. Working Paper, http://www.creditriskresource.com/papers/paper_89.pdf, 2004. 被引量:1

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部