期刊文献+

基于改进蚁群算法的机器人路径规划算法 被引量:12

An Improved Ant Colony Algorithm for Path Planning of Mobile Robots
下载PDF
导出
摘要 针对传统蚁群算法搜索时间长、容易陷入局部最优解等缺点,提出了一种基于组合优化和起始目标导引函数的改进型蚁群算法。为备选结点引入优先级,采用状态转移概率和优先级的组合优化方法平衡各路径信息,避免陷入局部最优。搜索过程引入起始目标导引函数,优先搜索距起点远而距目标点近的结点。仿真结果表明,所提出的改进蚁群算法能够在较短时间内找到全局最优路径,显著提高移动式机器人的路径规划性能。 The problems of traditional ant colony algorithm are searching so long and getting into local solutions easily,we present an improved ant colony algorithm using priority strategy and a start-goal guiding function in searching,In order to get into the local path, we introduced the priority to balance the pheromone of all patbes.In the process of searching,we introduced the start-goal guiding function to search the closest crunode away from the destination.The simulation results show that the improved ant colony algorithm can find the global path within the shortest time,and the algorithm improves the performance of path planning.
出处 《微计算机信息》 北大核心 2008年第20期252-253,212,共3页 Control & Automation
基金 河南省自然科学基金项目(No.0511011700)
关键词 移动机器人 改进蚁群算法 路径规划 mobile robot improved ant colony algorithm path planning
  • 相关文献

参考文献5

二级参考文献16

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 2徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65. 被引量:66
  • 3胡利平,许永城,高文,胡亮.蚁群神经网络在鱼病专家系统中的应用研究[J].微计算机信息,2005,21(07X):149-151. 被引量:11
  • 4李天成,罗键. 应用智能蚂蚁算法解决旅行商问题[D].厦门:厦门大学自动化系,2003.LI Tiancheng,LUO Jian.An intelligent ant system for solving TSP[D].Xiamen:Dept of Automation,Xiamen University,2003. 被引量:1
  • 5刘玉明. 基于遗传算法的智能水下机器人全局路径规划的研究[D].哈尔滨:哈尔滨工程大学船舶工程学院,2002.LIU Yuming.Research on global path planning for AUV based on genetic algorithm[D].Harbin:Harbin Engineering University,2002. 被引量:1
  • 6MARTIN M, FRANK R, HARTMUT S. Multi colony ant algorithms [J]. Journal of Heuristics, 2002,8:305-320. 被引量:1
  • 7DANIEL M, MARTIN M. Ant colony optimization with global pheromone evaluation for scheduling a single machine [J]. Applied Intelligence,2003,18:105-111. 被引量:1
  • 8Dorigo M,V Maniezzo,A Colorni.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,1996,26(1):29-41. 被引量:1
  • 9Dorigo M,Gambardella C.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans Evolution Compute,1997,1(1):53-66. 被引量:1
  • 10T Stutzle and H Hoos,MAX-MIN Ant System and Local Search for Traveling Salesman Problem[A].In T.Baeck,Z.Michalewicz,and X.Yao,editors,Proceedings of the IEEE International Conference on Ebolutionary Computation (ICEC' 97),1997:309-314. 被引量:1

共引文献18

同被引文献92

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部