期刊文献+

Kr和Kr2的实验和理论研究 被引量:2

Experimental and Theoretical Study of Kr and Kr_2
下载PDF
导出
摘要 利用超声分子束技术、同步辐射和反射式飞行时间质谱仪得到了Kr和Kr2的光电离质谱和光电离效率谱,确定了Kr和Kr2的电离能.利用Gaussian-03程序中的MP2(Full)/6-31G*,QCISD/cc-pVTZ以及B3LYP/6-31G方法优化了Kr2的结构,计算了它们的振动频率和电离能,计算结果显示:当采用相同的理论水平和基组时,随着Kr同位素质荷比(m/z)的增大,它们结构和电离能保持不变,而振动频率逐渐变小.与此同时,用G2方法计算了Kr(84)和Kr2(168)的电离能,它们的电离能的理论值与实验结果符合得比较好. The photoionization mass spectroscopy (PIMS) and photoionization efficiency spectroscopy (PIES) of Kr and Kr2 have been obtained using a supersonic molecule beam, synchrotron radiation and reflection time of flight mass spectrum. The ionization energies of Kr and Kr2 were determined from their PIES. The geometries, harmonically vibrational frequencies, and ionization energies of Kr2 have also been calculated using MP2(Full)/6-31G^*, QCISD/cc-pVTZ and B3LYP/6-31G. When the same level of theory was used, the structure and ionization energy were nearly unchanged, and the vibrational frequency was decreased gradually with increasing m/z of Kr isotope. At the same time, the ionization energies of Kr (84) and Kr2 (168) were calculated using a G2 method. The theoretical values of the ionization energy are in agreement with those experimental ones.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2008年第13期1508-1512,共5页 Acta Chimica Sinica
基金 国家自然科学基金(No.10374084)资助项目
关键词 KR Kr2 分子束 同步辐射 光电离 量子化学计算 Kr, Kr2 molecular beam synchrotron radiation photoionization quantum chemical calculation
  • 相关文献

参考文献11

  • 1Pratt, S. T. P.; Dehmer, M. Chem. Phys. Lett. 1982, 87, 533. 被引量:1
  • 2Norwood, K.; Luo, G.; Ng, C. Y. J. Chem. Phys. 1989, 90, 4689. 被引量:1
  • 3Gantefor, G.; Broker, G.; Holb-Krappe, E.; Ding, A. J. Chem. Phys. 1989, 91, 7972. 被引量:1
  • 4Ma, N. L.; Li, W. K.; Ng, C. Y. J. Chem. Phys. 1993, 99, 3617. 被引量:1
  • 5Ha, T. K.; Rupper, P.; Wueest, A.; Merkt, F. Mol. Phys. 2003, 101,827. 被引量:1
  • 6Yoshii, H.; Tsukamoto, K.; Hayaishi, T.; Aoto, T.; Ito, K.; Morioka, Y. J. Chem. Phys. 2005, 123, 184303. 被引量:1
  • 7Bonhommeau, D.; Bouissou, T.; Halberstadt, N. J. Chem. Phys. 2006, 124, 164308. 被引量:1
  • 8Wang, S. S.; Kong, R. H.; Shan, X. B.; Zhang, Y. W.;Sheng, L. S.; Wang, Z. Y.; Hao, L. Q.; Zhou, S. K. J. Synchrotron Radiat. 2006, 13, 415. 被引量:1
  • 9Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adam, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S., Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03, Pittsburgh PA, 2003. 被引量:1
  • 10Curtiss, L. A.; Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1991, 94, 7221. 被引量:1

同被引文献27

  • 1PRATT S T, DEHMER P M. Photoionization of the neon-rare gas dimers NeAr, NeKr and NeXe[J]. J Chem Phys, 1982, 76(7):3433-3439. 被引量:1
  • 2YOSHII H, TSUKAMOTO K, HAYAISHI T, et al. Dissociation processes of Kr^+ and Kr^+ studied by threshold photoeleetron-photoion coincidence measurements[J]. J Chem Phys, 2005, 123 (18) 184303-184307. 被引量:1
  • 3CLECENGER J O, TELLINGHUISEN J. The B(1/2^2P3/2) →(1/2^2 ∑^+ ) transition in XeBr [J]. J ChemPhys, 1995, 103(22): 9611-9620. 被引量:1
  • 4YOURSHAW I, LENZER T, REISER G, et al. Zero electron kinetic energy spectroscopy of the KrBr^- ,XeBr^- ,and KrCl^-anions[J]. J Chem Phys, 1998, 109(13): 5247-5256. 被引量:1
  • 5TREVOR D J, POLLARD J E, BREWER W D, et al. Photoionization mass spectroscopy of Ne dimers [J]. J Chem Phys, 1984, 80(12) : 6083-6091. 被引量:1
  • 6BONHOMMEAU HALBERSTADT D, BOUISSOU N. Modelization T, of the fragmentation dynamics of krypton clusters(Krn, n= 2 - 11 )following electron impact ionization[J]. J Chem Phys, 2006, 124(16): 164308-164317. 被引量:1
  • 7CYBULSKI S M, TOCZYLOWSKI R R. Ground state potential energy curves for He2, Ne2, Ar2, He-Ne,He-Ar and Ne-Ar: A coupled-cluster study[J]. J Chem Phys, 1999, 111(23): 10520-10528. 被引量:1
  • 8HALEY T P, CYBULSKI S M. Ground state potential energy curves for He-Kr, Ne-Kr, Ar-Kr and Kr2: Coupled-cluster calculations and comparison with experiment [ J ]. J Chem Phys, 2003, 119(11): 5487-5496. 被引量:1
  • 9LI Xin-ying, ZHAO Yong-fang, JING Xiao-gong, et al. Rapid estimation of the electron correlation energy for van der Waals-complexes RgX (Rg = Kr, Xe,X=Br, I)[J]. Phys Scr, 2006, 73(1): 103- 106. 被引量:1
  • 10YU De-yang. A proposal design of a multi-hit two- dimensional position-sensitive energy spectrum detector[J]. Nucl Instrum Methods Phys Res (Sect A), 2007, 581(3): 882-884. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部