期刊文献+

基于Q学习的适应性进化规划算法 被引量:5

An Adaptive Evolutionary Programming Algorithm Based on Q Learning
下载PDF
导出
摘要 进化规划中,个体选择变异策略特别重要.适应性变异策略因在进化过程中动态选择个体变异策略,能够取得较好的性能.传统适应性变异策略都依据个体一步进化效果考察个体适应性,没有从多步进化效果上对变异策略进行评价.本文提出一种新的基于Q学习的适应性进化规划算法QEP(Q learning based evolutionary programming),该算法将变异策略看成行动,考察个体多步进化效果,并通过计算Q函数值,学习个体最优变异策略.实验表明,QEP能够获得好的性能. Selection of mutation strategies plays an important role in evolutionary programming, and adaptively selecting a mutation strategy in each evolutionary step can achieve good performance. A mutation strategy is evaluated and selected only based on the one-step performance of mutation operators in classical adaptive evolutionary programming, and the performance of mutation operators in the delayed mutation steps is ignored. This paper proposes a novel adaptive mutation strategy based on Q learning-- QEP (Q learning based evolutionary program- ming). In this algorithm, several candidate mutation operators are used and each is considered as an action. The evolutionary performance of delayed mutation steps is considered in calculating the Q values for each mutation operator and the mutation operator that maximizes the learned Q values is the optimal one. Experimental results show that the proposed mutation strategy achieves better performance than the existing algorithms.
作者 张化祥 陆晶
出处 《自动化学报》 EI CSCD 北大核心 2008年第7期819-822,共4页 Acta Automatica Sinica
基金 国家自然科学基金(90612003) 山东省中青年科学家科研奖励基金(2006BS01020) 山东省自然科学基金(Y2007G16)资助~~
关键词 进化规划 变异策略 Q学习 收益 Evolutionary programming, mutation strategy, Q learning, reward
  • 相关文献

参考文献10

  • 1Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming. New York: Wiley-Interscience, 1999. 被引量:1
  • 2Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102. 被引量:1
  • 3Lee C Y, Yao X. Evolutionary programming using mutations based on the Levy probability distribution. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 1-13. 被引量:1
  • 4Ji M J, Tang H W, Guo J. A single-point mutation evolutionary programming. Information Processing Letters, 2004, 90(6): 293-299. 被引量:1
  • 5Dong H, He J, Huang H, Hou W. Evolutionary programming using a mixed mutation strategy IOnline], available: http://www.cs.bham.ac.uk/jxh/hejunpl.html, December 20, 2006. 被引量:1
  • 6Fogel D B. Evolving Artificial Intelligence [Ph.D. dissertation].California, USA: University of California. 1992. 被引量:1
  • 7Iwamatsu M. Generalized evolutionary programming with Levy-type mutation. Computer Physics Communications, 2002, 147(1): 729-732. 被引量:1
  • 8Lee S H, Jun H B, Sim K B. Performance improvement of evolution strategies using reinforcement learning. In: Proceedings of IEEE International Fuzzy Systems Conference. Seoul, Korea: IEEE, 1999. 639-644. 被引量:1
  • 9刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报,2006,29(1):100-105. 被引量:37
  • 10Sutton R S, Barto A C. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998. 被引量:1

二级参考文献10

  • 1Rowlins G. ed.. Foundations of Genetic Algorithm. Los Altos: Morgan Kanfmann, 1991. 被引量:1
  • 2Powll D. , Tong S. , Skolnik M.. Domain independent machine for design optimization. In: Proceedings of the AAAI-90,George Mason University, USA, 1989, 151-159. 被引量:1
  • 3Cho S. B.. Combining modular neural networks developed by evolutionary algorithm. In: Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, 1997, 647-650. 被引量:1
  • 4Zhao Q. F. , Arlo, Study on Co-evolutionary Learning of Neural Networks. Heidelberg: Springer-Verlag, 1997. 被引量:1
  • 5Michalewicz Z. et. al. eds.. In: Proceeding of the 1st International Conference on Evolutionary Computation (ICEC' 94),Orlando, Florida, USA, 1994, 665-669. 被引量:1
  • 6Goldberg D. E.. Real-coded genetic algorithms, virtual alphabets, and blocking. University of Illinois at Urbana-Champaign: Technical Report No. 90001,1990. 被引量:1
  • 7Holland J. H.. Adaptation in Natural and Artificial Systems.Ann Arbor: The University of Michigan Press, 1975. 被引量:1
  • 8Belew R. , Booker L.. Proceedings of the 4th International Conference on Genetic Algorithms. Los Altos, CA: Morgan Kaufmann Publishers, 1991. 被引量:1
  • 9Whitley D. , Mathias K. , Fitzhorn P.. Delta Coding: An Iterative Search Strategy for Genetic Algorithms. Los Altos, Morgan Kaufmann Publishers, 1991, 77-84. 被引量:1
  • 10Michalewicz Z.. Genetic Algorithms+ Delta Strucures= Evolution Programs. Berlin Heidelberg: Springer-Verlag, 1996. 被引量:1

共引文献36

同被引文献45

  • 1韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 2胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 3Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of the IEEE Int Conf on Neural Network. Perth: IEEE Inc, 1995: 1942-1948. 被引量:1
  • 4Shi Y, Eberhart R C. A modified particle swarm optimizer[C]. IEEE World Conf on Computational Intelligence. Piscataway: IEEE Press, 1998: 69-73. 被引量:1
  • 5Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: 1EEE Press, 2001: 101-106. 被引量:1
  • 6Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]. Lecture Notesin Computer Science. Chicago: Springer-Verlag, 2003: 134-139. 被引量:1
  • 7Zhang H X, Lu J. Adaptive evolutionary programming based on reinforcement learning[J]. Information Sciences, 2008, 178(4): 971-984. 被引量:1
  • 8Chatterjee A, Siarry E Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers and Operations Research, 2006, 33(3): 859- 871. 被引量:1
  • 9Sutton R S, Barto A G. Reinforcement learning: An introduction[M]. Cambridge: MIT Press, 1998. 被引量:1
  • 10刘建华,樊晓平,瞿志华.一种基于相似度的新型粒子群算法[J].控制与决策,2007,22(10):1155-1159. 被引量:18

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部