期刊文献+

基于关联规则的医学图像分类算法 被引量:1

Efficient medical image classification algorithm based on association rules
下载PDF
导出
摘要 针对医学图像数据的特殊性,提出了一种适合挖掘大量医学图像数据的关联分类算法。该算法以频繁模式树为基础,通过引入双支持度,排除一部分对分类无意义且存在干扰的项,以提高分类正确率。实验结果表明,当用于医学图像分类时,该算法可以取得同样的基于关联规则的分类算法CMAR更高的执行效率及更好的分类效果。 According to the characteristic ofmedical image dataset, new associative classification algorithm is introduced which suitable for mining huge medical image dataset. The new algorithm is based on FP-growth, which introduce double-support to eliminate items which interfere with classification. The experiments show that when used for medical image classification the method has better efficiency and classification accuracy than other reported associative classification methods.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第12期3234-3236,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60572112)
关键词 数据挖掘 关联规则 分类 频繁模式树 医学图像 data mining associative rules classification FP-growth medical image
  • 相关文献

参考文献9

  • 1Han J,Kamber M.Data mining: Concepts and techniques[M].Beijing:Beijing Higher Education Press,2001 : 10-20. 被引量:1
  • 2Li Wenmin,Han J,Jian ECMAR:Accurate and efficient classification based on multiple class-association rules [C]. America. Proceedings of IEEE International Conference on Data Mining Can Jose,2001:369-376. 被引量:1
  • 3宋余庆..医学图像数据挖掘若干技术研究[D].东南大学,2004:
  • 4朱玉全,杨鹤标,孙蕾编著..数据挖掘技术[M].南京:东南大学出版社,2006:193.
  • 5Fadi Thabtah.Challenges and interesting research directions in associative classification[C].America:Proceedings of IEEE International Conference on Data Mining,2006:879-886. 被引量:1
  • 6Wang TJ.Fast associated classification algorithm of medical images based on constraints[C].Wuhan:Huazhong University of Science Technology(Nature Science Edition),2005:73-78. 被引量:1
  • 7徐文拴,辛运帏.一种新的基于FP-Tree的关联规则增量式更新算法[J].计算机工程与设计,2006,27(18):3430-3432. 被引量:5
  • 8王元珍,钱铁云,冯小年.基于关联规则挖掘的中文文本自动分类[J].小型微型计算机系统,2005,26(8):1380-1383. 被引量:13
  • 9王立军.基于关联规则的医学图像分类[D].镇江:江苏大学,2005:45-50. 被引量:1

二级参考文献19

  • 1钟勇发,吕红兵.基于FP-growth的关联规则增量更新算法[J].计算机工程与应用,2004,40(26):174-175. 被引量:5
  • 2Agrawal R, Srikant R. Fast algorithm for mining association rules in large databases [C]. In: Research Report RJ9839.IBM Almaden Research Center. San Jose. Ca, June 1994: 1-32. 被引量:1
  • 3Liu Bing. Integrating classification and association rule mining[J]. KDD-98, 1998. 被引量:1
  • 4Li Wen-rain, Han Jia-wei,Pei Jian. CMAR: Accurate and efficient classification based on multiple class-association rules[C]. ICDM2001:369-376. 被引量:1
  • 5Osmar R Zaiane, Maria-Luiza Antonie. Classifying text document by association terms with text categories [C]. The Thirteenth Australssian Database Conference (ADC2002), Melbourne, Australia : 215-222. 被引量:1
  • 6范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:120
  • 7Han J,Pei J,Yin Y.Mining frequent pattern without candidate generation[C].Dallas,TX:Proc 2000 ACM-SIGMOD Int Conf Management of Data (SIGMOD'00),2000.1-12. 被引量:1
  • 8Cheung D W.Maintenance of discovered association rules in large databases:An incremental updating technique[C].Proceedings of the 12th International Conference on Data Engineering,1996.106-114. 被引量:1
  • 9冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 10黄萱菁,吴立德,石崎洋之,徐国伟.独立于语种的文本分类方法[J].中文信息学报,2000,14(6):1-7. 被引量:52

共引文献16

同被引文献50

引证文献1

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部