期刊文献+

一种改进的运动目标跟踪算法 被引量:7

Improved tracking algorithm for moving target
下载PDF
导出
摘要 为了进一步增加均值平移算法用于目标跟踪的准确性和鲁棒性,提出了加入目标位置的预测、对大目标间断采样、联合颜色信息与边缘信息建立直方图、采用多个候选目标优选与验证等4种改进方法,减小算法的计算量,提高算法的匹配速度,增强算法的适应性。使用Edinburgh大学提供的Workshop 1 front图像序列进行测试,分别得到了原算法与改进算法的Bhattacharyya距离,通过比较其平均值和标准偏差,说明了改进算法中最优匹配比原算法准确。使用自拍摄的复杂背景图像测试后,说明了改进算法的适应性。实验结果表明,改进后的均值平移算法对运动目标跟踪效果良好。 To improve the precision and robustness of Mean-shift algorithm which is used to track the moving target, four methods were put forward to increase the matching speed, improve the adaptability of the algorithm and decrease the calculation workload. The four methods were importing position prediction for target, discontinuous-sampling for large target, combing color and edge information of target to compute histogram, choose the optimal result from several target candidates. The Bhattacharyya distance of the original and improved algorithm was obtained by using Workshop 1 front image sequence provided by Edinburgh University. Comparing the mean and standard mean-square error of Bhattacharyya distance, the optimal matching of improved algorithm was more accurate than the original algorithm. The test result show that the adaptability of improved algorithm is good by using image under complex background photographed. The improved Mean-Shift algorithm is effective to track moving target.
出处 《红外与激光工程》 EI CSCD 北大核心 2008年第3期556-560,共5页 Infrared and Laser Engineering
基金 总装备部试验技术研究项目(2003SY4106007)
关键词 目标跟踪 均值平移算法 直方图 Tracking object Mean-Shift algorithm Histogram
  • 相关文献

参考文献9

二级参考文献34

  • 1周赟,李久贤,夏良正.基于区域生长的红外图像分割[J].南京理工大学学报,2002,26(S1):75-78. 被引量:17
  • 2汪颖进,张桂林.新的基于Kalman滤波的跟踪方法[J].红外与激光工程,2004,33(5):505-508. 被引量:13
  • 3郭礼华,李建华,杨树堂.基于运动补偿的Snake视频对象跟踪算法[J].红外与激光工程,2005,34(1):93-97. 被引量:5
  • 4聂烜,赵荣椿,沈亚萍.基于Snake技术的运动目标轮廓提取[J].计算机工程,2005,31(23):148-150. 被引量:6
  • 5孙仲康 陈辉粕.定位导航与制导[M].北京:国防工业出版社,1987.. 被引量:25
  • 6GC古德温.自适应滤波,预测与控制[M].科学出版社,1992.. 被引量:1
  • 7Alan J.LIPTON,Hironobu FUJIYOSHI,Raju S.PATIL.Moving target classification and tracking from real—time video[A].Proceeding of the Workshopon Application of Computer Vision[C].Princeton:IEEE,1998,8-14. 被引量:1
  • 8Ismail HARITAOGLU,David HARWOOD,Larry S.DAVIS.W4:real—time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809—830. 被引量:1
  • 9Chao WANG, Akira OHSUMI, Igor DJUROVIC. Model predictive control of noisy plants using Kalman predictor and filter [A].Proceedings of the IEEE Region 10 Conference on Computers, Communications, Control & Power Engineering [C].Beijing: IEEE, 2002, (3): 1404-1407. 被引量:1
  • 10PO Lai -man, MA Wing-chung.A novel four-step search algorithm for fast block motion estimation [J].Transactions on Circuits and System for Video Technology, 1996,6(3):313-317. 被引量:1

共引文献48

同被引文献36

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部