摘要
讨论基于拟t-模的方程T(a,x)=b与方程I(a,x)=b的解的结构,得到了它们的解集以及它们有解的充分必要条件,并利用方程T(a,x)=b与方程I(a,x)=b的解集,研究方程T((a1,a2),(x1,x2))=(b1,b2)以及方程I((a1,a2),(x1,x2))=(b1,b2)的解结构与解集.其中L为完备Brouwer格,T为拟t-模,I是蕴涵算子.
The structure of the solution of equations T(a ,x)=b and I(a ,x)=b is discussed in this paper based on quasi-t-norm, and the solution set and the sufficient and necessary condition for the existence of solutions are obtained. Making use of the solution set, this study probes into the structure and solution set of equations T((al ,a2),(x1 ,x2))=(b1 ,b2) and I((a1 ,a2),(x1 ,x2))= (b1 ,b2), where L is a complete Brouwerian lattice, T is a quasi-t-norm and I is an implication.
出处
《淮海工学院学报(自然科学版)》
CAS
2008年第2期5-7,共3页
Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金
江苏省高校自然科学研究指导性计划项目(02KJD110006)
关键词
非经典逻辑
拟卜模
伪T-模
蕴涵
L-关系方程
non-classical logic
quasi-t-norm
pseudo-t-norms
implication
L-relation equation