期刊文献+

一种移动机器人视觉图像特征提取及分割方法 被引量:7

A Visual Image Feature Extraction and Segmentation Method for Mobile Robot
下载PDF
导出
摘要 提出一种基于HSI(Hue-Saturation-Intensity)颜色分量的颜色特征提取方法.该方法结合HSI颜色分量反映物体本质颜色的特点和直方图多阈值分类对图像内容的自适应优点,采用直方图多阈值分类方法量化各HSI颜色分量,组合量化后的颜色分量提取图像颜色特征.对该方法提取的视觉图像颜色特征进行聚类,并对视觉图像进行分割;分割结果验证了本文所提颜色特征提取方法的有效性和可行性.针对颜色分量直方图数据局部极大值引起的颜色分量过分类问题,提出一种通过修改极大值对之间的数据来去除颜色分量直方图局部极大值的方法.该方法定量分析颜色分量直方图数据的分布特点,从而确定并修改颜色分量直方图数据中的局部极大值.实验结果验证了该方法能够有效去除直方图数据局部极大值. A color feature extraction method based on HSI (Hue-Saturation-Intensity) color components is proposed. The presented method integrates the characteristics that HSI color components express the intrinsic color information with the advantage that the multi-threshold classification method of component histogram adapts to the image content, quantifies HSI color components using multi-threshold classification method based on histogram, and extracts image color features by combining quantified color components. Color features of visual image extracted by this method are clustered, the visual image is segmented, .and the segmentation results prove that the color feature extraction method is effective and feasible. For the excessive classification problem of color components caused by local maximums of color component histogram, a method is presented to eliminate local maximums in the color component histogram by amending the data between maximum pairs. Data distribution characteristics of the color component histogram are analyzed quantificationally, and then the local maximums in color component histogram are confirmed and amended. The experiment results indicate that the presented method can effectively eliminate local maximums in the histogram data.
出处 《机器人》 EI CSCD 北大核心 2008年第4期311-317,共7页 Robot
基金 黑龙江省杰出青年科学基金资助项目(2005F030605) 哈尔滨市科技创新人才专项资金资助项目(2007RFXXG007)
关键词 移动机器人 视觉 颜色特征提取 直方图 mobile robot vision color feature extraction histogram
  • 相关文献

参考文献8

二级参考文献33

  • 1邱兆文,张田文.一种新的图像颜色特征提取方法[J].哈尔滨工业大学学报,2004,36(12):1699-1701. 被引量:26
  • 2Zhang Y J, Gerbrands J J. Transition region determination based thresholding [J]. Pattern Recognition Letters, 1991(12): 13-23. 被引量:1
  • 3Yah C X, Sang N, Zhang T X. Local entropy-based transition region extraction and thresholding [ J ]. Pattern Recognition Letters, 2003, 24(16) : 2 935-2 941. 被引量:1
  • 4Boukharouba S, Rebordao J M, Wendel P L. An amplitude segmentation method based on the distribution function of an image[ J ]. Computer Vision, Graphics, and Image Processing, 1985, 29:47-59. 被引量:1
  • 5Olivo J C. Automatic threshold selection using the wavelet transform[J]. CVGIP: Graphical Models and Processing, 1994, 56(3): 205-218. 被引量:1
  • 6Canny J F. A computational approach to edge detection [J ]. IEEE Transactions PAMI, 1986, 8 (6) : 679-698. 被引量:1
  • 7Cheng J, Chang F J, Chang S. A new criterion for autornatic multilevel thresholding [ J ]. IEEE Transactions Image Processing, 1995, 4(3) : 370-377. 被引量:1
  • 8SMEULDERS A, WORRING M. Content-based image retrieval at the end of the early yers[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12): 1349- 1380. 被引量:1
  • 9FLICKNER M. Query by image and video content: the QBIC system[J]. IEEE Computer,1995, 28(9) :23 -32. 被引量:1
  • 10SMITH J R, CHANG S F. VisualSeek: a fully automated content-based image query system[A]. Proceedings of ACM Multimedia Conference[C]. Boston: MA,1996. 87 -98. 被引量:1

共引文献39

同被引文献93

引证文献7

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部