摘要
本文研究了退化抛物方程C(u)_t=Δu的有限扩散速度问题。在适当的假设下,若设u(x,t)为其非负有界弱解,则对任意的(x^0,t^0)∈R_T={(x,t):x∈R^N,0<t≤T},:成立:其中b、c为正常数。
In this paper,we discuss the problem of finite diffusing speed for degenerate parabolic equation C(u)t=△uin RT={(x,t):x∈RN, 0<t≤T}. Under some conditions of the function c(s) and the presumption 0≤u(x,t)≤M,We prove that noa-negative weak solution u(x,t)satisfy,for any(x0,t0)∈RT:where b>0, c>0 depend only on N, T and M.
出处
《河南大学学报(自然科学版)》
CAS
1990年第2期57-62,共6页
Journal of Henan University:Natural Science
关键词
退化
抛物方程
有限
扩散速度
弱解
degenerate parabolic equation, finite diffusing speed, weak Solution, the B2-Class.