期刊文献+

语音信号精细时频结构的局部余弦基分析 被引量:2

Analysis of speech signal's subtle time-frequency structure using local cosine bases
下载PDF
导出
摘要 从自适应信号分解的角度提出用可精确覆盖时频平面的局部余弦基分析语音信号精细时频结构的方法。首先使用快速动态规划算法,将语音信号分解成局部余弦基原子的组合,从得到的信号分解原子的Heisenberg盒可以初步提取语音信号的有效时频特征。为了得到更精细的时频结构,再使用MP算法分解,并作出局部余弦基原子的WVD。仿真结果显示MP分解得到原子的WVD不仅有更佳的时频聚集性,而且对二次型时频表示中的交叉项有一定抑制作用。 Based on the principle of adaptive signal decomposition, a method of analyzing the speech signal's subtle time-frequency structure using Local cosine bases is proposed. Firstly, the algorithm of fast dynamic programming is used to decompose the signal into Local-cosine atoms which can cover the timefrequency pane accurately; then the Heisenberg boxes, from which the speech signal's effective time-frequency characters are extracted, can be obtained. In order to get more subtle time-frequency structures, the MP method is used to get WVD of these Local cosine bases. Simulation result has shown that the later method not only has higher time-frequency resolution, but also has the corresponding restriction effect on the cross-term interference in quadratic time-frequency representation.
作者 郭昕 于凤芹
出处 《声学技术》 CSCD 北大核心 2008年第3期407-411,共5页 Technical Acoustics
关键词 自适应信号逼近 最佳基 匹配追踪 WIGNER-VILLE分布 adaptive signal decomposing best bases matching pursuit (MP) WVD
  • 相关文献

参考文献5

  • 1Coifman R R, Wickerhauser M V. Entropy-based algorithms for best basis selection[J]. IEEE Trans. Info. Theory, 1992, 38(2): 713-718. 被引量:1
  • 2Mallat S, Zhang Z. Matching pursuit with lime-frequency dictionaries[J]. IEEE Trans. Signal Processing, 1993, 41 (12) : 3397-3415. 被引量:1
  • 3Mallat Stephane. A wavelet tour of signal processing (Second Edition)[MI. Beijing: China Machine Press, 1998, 357, 362, 309-311, 413. 被引量:1
  • 4袁金焕,李钢虎,张宏科.基于盲源分离技术的一种信号处理方法研究[J].声学技术,2005,24(1):50-54. 被引量:3
  • 5Gribonval R. Fast matching pursuit with a multiscale dictionary of Gaussian Chirps[J]. IEEE Trans. Signal Processing, 2001, 49(5): 994-1001. 被引量:1

二级参考文献6

  • 1Jutten C,Heranlt.Blind separation of sources -Part I:An adaptive algorithm based on neuromimetric architecture[J].Signal Processing,1991,24:1-20. 被引量:1
  • 2Herault J,Jutten C.Space or time adaptive signal processing by neural network models[A].in Neural Networks for Computing:Denker J S.AIP Conference Processings 151[C].New York:American Institute of Physics,1986. 被引量:1
  • 3Nadal J -P,Parga N.Non-linear neurons in the low noise limit:a factorial code maximizes information transfer[J].Network,1994,5:565-581. 被引量:1
  • 4Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7:1129-1159. 被引量:1
  • 5Boashash B.Time-frequency signal analysis.In:Haykin S.Advances in Spectrum Analysis and Array Processing:Vol I[M].Englewood Cliffs:Prentice Hall,1991.418-517. 被引量:1
  • 6Amari S,Cichocki A,Adaptive blind signal processing-neural network approaches [J].Proceedings of the IEEE,1998,86(10):2026-2048. 被引量:1

共引文献2

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部