期刊文献+

基于分布估计算法和遗传算法融合的神经网络故障诊断模型研究 被引量:1

Study of fault diagnosis model based on neural network using estimation of distribution algorithm combined with genetic algorithm
下载PDF
导出
摘要 本文构造了基于分布估计算法(Estimation of Distribution Algorithm,EDA)和遗传算法(GeneticAlgorithm,GA)融合的神经网络(Neural Network,NN)故障诊断模型。传统的GA看作是对生物进化"微观"层面上的模拟,则EDA是对生物进化"宏观"层面上的建模,是一种全新的进化模式。EDA与GA融合的实质是在解空间"宏观"和"微观"两个层面进行寻优,可克服NN陷入局部最小,提高NN的泛化能力,使故障诊断的容错性能得到有效改善。将该模型用于高压输电线系统的故障诊断,并作容错性能的评估。由仿真测试表明,研究模型的容错性能要优于传统的BP-NN模型和单纯GA优化NN模型。因此,新诊断模型是有一定的理论和实用价值的。 A fault diagnosis model using NN (neural network) based on EDA (estimation of distribution algorithm) combined with GA (Genetic Algorithm) is constructed in this paper. The traditional GA is regarded as the simulation of biological evolution from microscopic level, while EDA is from macroscopic level. EDA is a kind of novel evolution mode. The essence of combining EDA with GA is to search the optimal solution from microscopic and macroscopic level, meanwhile to avoid NN to immerse in the local minimal points and improve generalization ability, so fault-tolerance performance of fault diagnosis model can be effectively improved. The presented model is used as the fault diagnosis in high voltage transmission line system, and their fault-tolerance performance is assessed. Through the simulation and test, it shows that the fault-tolerance performance of researched model is superior to that of the diagnosis model corresponding BP-NN and GA-NN. So researched diagnosis model possess theoretical and practical value.
出处 《电工电能新技术》 CSCD 北大核心 2008年第3期18-21,48,共5页 Advanced Technology of Electrical Engineering and Energy
基金 中国电力联合会许继科技计划项目 青岛大学引进人才科研基金项目
关键词 高压输电系统 故障诊断 容错性能 分布估计算法 遗传算法 神经网络 high voltage transmission line system (HVTLS) fault diagnosis (FD) fanlt-tolerance performance estimation of distribution algorithm (EDA) genetic algorithm (GA) neural network (NN)
  • 相关文献

参考文献9

  • 1Eiko Sugawara; Masaru Fukushi, Susurnu Horiguchi Fault tolerant multi-layer neural networks with GA training [ A ]. Proc. 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems [C]. Boston, MA, USA, 2003. 328-335. 被引量:1
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 3Larranaga P; Lozano J A. Estimation of distribution algorithms. A New Tool for Evolutionary Computation [ M ]. Boston: Kluwer Academic Publishers, 2002. 被引量:1
  • 4Sagarna R; Lozano J. On the performance of estimation of distribution algorithms applied to software testing [J]. Applied Artificial Intelligence, 2005, 19(5): 457-489. 被引量:1
  • 5赵中煜,彭宇,彭喜元.基于分布估计算法的组合电路测试生成[J].电子学报,2006,34(B12):2384-2386. 被引量:2
  • 6Simionescu P A; Beale D G; Dozier G V. Teeth-number synthesis of a multispeed planetary transmission using an estimation of distribution algorithm [J]. Journal of Mechanical Design, 2006, 128(1 ) : 108-115. 被引量:1
  • 7Sebag M, Ducoulombier A. Extending population-based incremental learning to continuous search spaces. In Parallel Problem Solving from Nature-PPSN V [M]. Spfinger-Verlag. Berlin, 2002. 418-427. 被引量:1
  • 8Man K F, Tang K S, Kwong S. Genetic algorithms: concepts and designs [M]. New York Springer, 2003. 被引量:1
  • 9孙雅明,宋建文,贺家李,贺继红.基于NN/ES的高压输电线路在线故障综合诊断和分析的智能系统[J].系统工程理论与实践,1997,17(2):60-66. 被引量:8

二级参考文献101

  • 1孙雅明,系统工程学报,1992年,7卷,1期 被引量:1
  • 2孙雅明,中国电机工程学报,1992年,12卷,2期 被引量:1
  • 3Shapiro J L. Drift and scaling in estimation of distribution algorithms. Evolutionary Computation, 2005, 13(1):99-123 被引量:1
  • 4Zhang Q, Miihlenbein H. On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 127-136 被引量:1
  • 5Zhang Q. On the convergence of a factorized distribution algorithm with truncation selection[Online], available: http://cswww.essex.ac.uk/staff/zhang/EDAWEB/,May 10, 2006 被引量:1
  • 6Zhang Q. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 80-93 被引量:1
  • 7Rastegax R, Meybodi M Ft. A study on the global convergence time complexity of estimation of distribution algorithms. Lecture Notes in Computer Science, 2005, 3641:441-450 被引量:1
  • 8Gao Y, Culberson J. Space complexity of estimation of distribution algorithms. Evolutionary Computation, 2005,13(1): 125-143 被引量:1
  • 9Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 2002, 31(3): 221-258 被引量:1
  • 10Muhlenbein H, HSns R. The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation, 2005, 13(1): 1-27 被引量:1

共引文献215

同被引文献15

  • 1俞欢军,张丽平,陈德钊,宋晓峰,胡上序.复合粒子群优化算法在模型参数估计中的应用[J].高校化学工程学报,2005,19(5):675-680. 被引量:19
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 3Harth E, Tzanakou E. Alopex: A stochastic method for determining visual perceptive fields[J]. Vision Research, 1974, 14(12): 1475-1482. 被引量:1
  • 4Bia A. Alopex-B: A new, simpler, but yet faster version of the Alopex training algorithm[J]. International Journal of Neural Systems, 2001, 11(6): 497-507. 被引量:1
  • 5Unnikrishnan K P, Venugopal K P. A correlation-based leaming algorithm for feed-forward and recurrent neural networks[J]. Neural Computation, 1994, 6(3): 469-490. 被引量:1
  • 6Miiblenbein H, Paal3 G From recombination of genes to the estimation of distributions[C]//MiJhlenbein H, Bendisch J, Voigt H, et al. The 4th International Conference on Parallel Problem Solving from Nature. Heidelberg: Springer, 1996: 178-187. 被引量:1
  • 7Miihlenbein H, H6ns R. The estimation of distributions and the minimum relative entropy principle[J]. Evolutionary Computation, 2005, 13(1): 1-27. 被引量:1
  • 8SUN Jian-yong, ZHANG Qing-fu, Edward P K Tsang. DE/EDA: A new evolutionary algorithm for global optimization[J]. Information Sciences, 2005, 169(3/4): 249-262. 被引量:1
  • 9Shakya S K. Probabilistic model building genetic algorithm (PMBGA): A Survey[EB/OL]. [2010-06]. http://www.comp. rgu.ac.uk/staff/ss/techReport/B asic survey.pdf. 被引量:1
  • 10Grahl J, Minner S, Rothlauf F. Behavior of UMDAc with truncation selection on monotonous functions[C]//Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC). Scotland: IEEE Press, 2005: 2553-2559. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部