摘要
文章论述了与给定切线多边形相切的三次代数曲线;构造的曲线是曲率连续的,具有整体可调性和局部可调性,且对切线多边形是保形的;与二次代数曲线相比,曲线达到曲率连续时各段无须通过求解方程得到,而且在切点固定时,还可通过调节参数来修改曲线;最后,通过实例说明本方法是有效的。
This paper discusses cubic algebraic curves with the given tangent polygon. The constructed curve possesses continuous curvature, whole adjustability and local adjustability, which keeps its form with regard to the tangent polygon. Compared with the conic, the curve attains curvature continuity without the need of solving a system of equations, and while the tangent point is fixed, the curve can also be modified by the adjustment of the parameter. Finally the example proves that the method is valid.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第6期968-971,共4页
Journal of Hefei University of Technology:Natural Science