期刊文献+

化工生产过程数据挖掘系统的研究与应用 被引量:4

Development and application of data mining system for chemical process
原文传递
导出
摘要 提出了化工生产过程数据挖掘系统的技术架构,在此基础上,采用多支持度关联规则挖掘算法,开发了化工生产过程数据挖掘软件ESP-Miner,该软件提供OPC Server标准接口,主流实时数据库接口、关系数据库接口ODBC、标准文本格式接口,可集成DCS、实时数据库系统、关系数据库系统及其他系统的生产数据,同时提供人工录入接口集成散点数据。该系统已经在三唑磷合成过程中得到了成功的应用,三唑磷收率提高了1.5%,三唑磷含量从80%提高到了83%,为企业带来了较好的经济效益和社会效益。 The technical frame of data-mining system for chemical process is proposed. Based on algorithm of association rules with multiple minimum supports, the data-mining software ESP-Miner for chemical process is developed. The software can integrate process data from Distributed Control System(DCS) , real-time database system, relational database system and other system by standard interface OPC Server, interface for mainstream real-time database, ODBC interface for relational database and standard text format interface. Furthermore, process data can be input by man-machine conversion interface. The ESP-Miner software is successfully carried out in triazophos synthesis process. The production indicates that after data mining recipe and parameter are adopted, the product yield of triazophos is increased by 1.5% on average, and the average triazophos content increases from 80% to 83%. It brings about more economic benefits and social benefits for corporation.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第7期769-772,共4页 Computers and Applied Chemistry
基金 国家创新研究群体科学基金(NCRGSFC:60721062) 国家高技术研究发展计划资助项目(863计划2007AA04Z172).
关键词 数据挖掘 关联规则 实时数据库 三唑磷合成过程 data-mining, association rules, real-time database, triazophos synthesis process
  • 相关文献

参考文献7

二级参考文献38

共引文献109

同被引文献34

  • 1周爱月,李志宏,张华.丁二烯萃取精馏塔操作参数离线调优[J].化学工业与工程,1993,10(1):7-15. 被引量:3
  • 2陆爱军,刘冰,刘海波,周家驹.中药化学数据库关联规则的挖掘[J].计算机与应用化学,2005,22(2):108-112. 被引量:17
  • 3韩少锋,陈立潮.数据挖掘技术及应用综述[J].机械管理开发,2006,21(2):23-24. 被引量:11
  • 4刘红玲,杨本晓,于红霞,刘蓓蓓.苯酚及其氯代物对大型溞的毒性效应和微观机理探讨[J].环境污染与防治,2007,29(1):33-36. 被引量:6
  • 5Funk G . L, Honston B F, Stacy G D . Making Energy Conservation Pay Through Automation [ J ]. Chemical Engineering Process, 1978,74 ( 5 ) :66 - 70. 被引量:1
  • 6Chen CY,,Shyue SW,Chang CJ.Association rule mining forevaluation of regional environments:case study of dapengbay,taiwan. International Journal of Innovative ComputingInformation and Control . 2010 被引量:1
  • 7Yan-Ping Zhou,Jian-Hui Jiang,Wei-Qi Lin,Hong-Yan Zou,Hai-Long Wu,Guo-Li Shen,Ru-Qin Yu.Boosting support vector regression in QSAR studies of bioactivities of chemical compounds[J]. European Journal of Pharmaceutical Sciences . 2006 (4) 被引量:1
  • 8Yu-Dong Cai,Kai-Yan Feng,Wen-Cong Lu,Kuo-Chen Chou.Using LogitBoost classifier to predict protein structural classes[J]. Journal of Theoretical Biology . 2005 (1) 被引量:1
  • 9Kai-Yan Feng,Yu-Dong Cai,Kuo-Chen Chou.Boosting classifier for predicting protein domain structural class[J]. Biochemical and Biophysical Research Communications . 2005 (1) 被引量:1
  • 10Qing Tao,Gao-wei Wu,Jue Wang.A new maximum margin algorithm for one-class problems and its boosting implementation[J]. Pattern Recognition . 2005 (7) 被引量:1

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部