期刊文献+

带有遗忘的视觉记忆模型及其在注意力选择上的应用 被引量:5

A Visual Memory Model with Amnesic Function and Its Application in Attention Selection
原文传递
导出
摘要 在我们以前提出的注意力选择模型上,提出一个带有学习和遗忘的视觉记忆模型:遗忘增量多层分类回归树,来模拟人脑的长短期记忆.同时自监督竞争神经网络综合自下而上和自上而下的信息找到注意力的焦点,该网络各个神经元的连接权根据环境变化在线调整,从而实现整个网络的在线学习.实验证明,该模型能够模拟人的注意力转移,并能在变化的环境中,有意识地盯住感兴趣的物体. Based on the previous attention selection model with visual memory as top-down guidance, a visual memory model is put forward with online learning and forgetting, called amnesic incremental hierarchical discriminant regression (AIHDR) tree, to mimic human short-term memory (STM) and long-term memory (LTM). A self-supervised competition neural network (SSCNN) combines the information from both bottom-up and top-down to find out the focus of attention (FoA). The connection weights in SSCNN can be updated in real-time according to the environment. Experimental results show that the proposed model can mimic the shift of human attention and stare at an interesting object consciously when environment changes.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期381-387,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60571052 60671062)
关键词 注意力选择 注意力焦点(FoA) 遗忘增量多层分类回归树(AIHDR) 自监督竞争神经网络(SSCNN) Attention Selection, Focus of Attention Discriminant Regression i AIHDR) Tree, (SSCNN) (FoA), Amnesic Incremental Hierarchical Self-Supervised Competition Neural Network
  • 相关文献

参考文献12

  • 1Treisman A M, Gelade G. A Feature-Integration Theory of Attention. Cognitive Psychology, 1980, 12( 1 ) : 97 - 136 被引量:1
  • 2Wolfe J M. Guided Search 2.0 : A Revised Model of Visual Search. Psychonomic Bulletin & Review, 1994, 1 (2) : 202 - 238 被引量:1
  • 3Koch C, Ullman S. Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. Human Neurobiology, 1985, 4 (4) : 219 -227 被引量:1
  • 4Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ) : 1254 - 1259 被引量:1
  • 5Lee K W, Buxton H, Feng Jianfeng. Cue-Guided Search: A Computational Model of Selective Attention. IEEE Trans on Neural Networks, 2005, 16(4) : 910 - 924 被引量:1
  • 6Downing P E. Interactions between Visual Working Memory and Selective Attention. Psychological Science, 2000, 11 (6) : 467 - 473 被引量:1
  • 7Moores E, Laiti L, Chelazzi L, Associative Knowledge Controls Deployment of Visual Selective Attention, Nature Neuroscience, 2003, 6(2): 182-189 被引量:1
  • 8Guo Chenlei, Zhang Liming. Attention Selection with Self-Supervised Competition Neural Network and Its Applications in Robot// International Symposium on Neural Networks. Nanjing, China, 2007 : 722 - 732 被引量:1
  • 9Weng Juyang, Hwang W S. Incremental Hierarchical Discriminant Regression. IEEE Trans on Neural Networks, 2007, 18(2) : 397 - 415 被引量:1
  • 10Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91 -110 被引量:1

同被引文献47

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部