期刊文献+

适于无源阵列跟踪的粒子滤波交互多模型算法 被引量:1

Algorithm of Particle Filter Interacting Multiple Model Suitable for Passive Array Tracking
下载PDF
导出
摘要 针对无源阵列被动跟踪效果较差的问题,融合交互式多模型和粒子滤波方法,提出了一种基于粒子滤波的交互多模型(IMM-PF)算法。该算法采用多模型结构跟踪目标的任意机动;各模型采用粒子滤波算法处理非线性、非高斯问题。各模型中相对固定数目的粒子群经过相互交互、粒子滤波后再进行重抽样以减少滤波退化现象。在交互阶段,对各模型的相应粒子进行输入交互;在滤波阶段,抽取N个采样点,得到估计采样,从而求得估计输出和有关函数;在混合阶段,获得状态向量的后验条件概率密度函数,通过这个后验概率密度便可获得状态向量的估计量。与典型的交互式多模型算法(IMM-KF)进行了比较,计算机仿真结果证实了本文新算法的正确性和有效性。 To solve the ineffective performance of passive array tracking, this paper presents an interacting multiple model particle filter algorithm ( IMM - PF) by combining the interacting multiple model with the particle filter method together. In using this algorithm, the structure of multiple models is adopted to track arbitrary maneuvering of the target, and at the same time particle filter method is employed in each model to deal with the nonlinear/non - Gaussian problems. After interaction and particle filtering, particles in each model with the fixed number are resampled to reduce the degeneracy of filtering. First, in the interaction stage, the particles corresponding to each model are input and interacting. Then, estimation resample is obtained by picking out N sampling points in the filtering stage, thereby the estimation output and the related function are gained. In the combination stage, the posteriori probability density functions of the state vectors are obtained, by combining the probability density functions of the different modes taking into account the mode probabilities. In the simulations, by comparison with the general interacting multiple model, the results demonstrate the correctness and efficiency of this new filtering method.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2008年第3期33-36,41,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家“863”计划资助项目(2006AA701307)
关键词 交互式多模型 粒子滤波 非线性 非高斯 重抽样 interacting multiple model particle filter nonlinear / non - Gaussian re - sampling
  • 相关文献

参考文献10

  • 1Shalom Y, Li XiaoRong. Estimation and Tracking: Principles ,Techniques, and Software [ M]. London:Artech House, 1993. 被引量:1
  • 2Gordon N, Salmond D J, Smith A F M. Novel Approach to Nonlinearand Non- Gaussian Bayesian State Estimation [J]. IEEE Proceedings - F, 1993, 140 (2):107 - 113. 被引量:1
  • 3McGinnity G, Irwin G W. Multiple Model Bootstrap Filter Formaneuvering Target Tracking [ J]. IEEE Transactions on Aerospaceand Electronic Systems, 2000, 36 (3):1006 - 1012. 被引量:1
  • 4Gordon N J, Maskell S, Kirubarajan T. Efficient Particle Filters Forjoint Tracking and Classification [ C ].//Proceedings of SPIE, Signaland Data Processing of Small Targets Oliver E and Drummond Editor[ S.l] :2002:439 -449. 被引量:1
  • 5Blom H A P, Bar Shalom Y. The Interactingmuhiple Model Algorithm for Systems with Markovian Switching Coefficients [ J]. IEEE Trans Automatic Control, 1988,33 ( 8 ) :780 - 783. 被引量:1
  • 6冯存前,童宁宁,丁前军.一种自适应阵列指向误差校正方法[J].空军工程大学学报(自然科学版),2007,8(4):53-57. 被引量:3
  • 7蒋宏,宋龙,任章.非全测状态下的机动目标跟踪[J].系统工程与电子技术,2007,29(2):197-200. 被引量:7
  • 8孙仲康,周一宇,何黎星著..单多基地有源无源定位技术[M].北京:国防工业出版社,1996:350.
  • 9周宏仁等著..机动目标跟踪[M].北京:国防工业出版社,1991:366.
  • 10Hong L, Cui N, Bakich M, et al. Multirate Interacting Multiple Model Particle Filter for Terrain - based Ground Target Tracking [ J ]. IEEE Proc Control Theory Appl,2006,153 (6) :265 - 269. 被引量:1

二级参考文献13

  • 1韩英臣,张永顺.一种基于特征子空间扩展的自适应波束保形方法[J].空军工程大学学报(自然科学版),2004,5(4):53-56. 被引量:2
  • 2段战胜,韩崇昭.一种强跟踪自适应状态估计器及其仿真研究[J].系统仿真学报,2004,16(5):1020-1023. 被引量:20
  • 3王春柏,赵保军,何佩琨.模糊自适应强跟踪卡尔曼滤波器研究[J].系统工程与电子技术,2004,26(10):1367-1369. 被引量:6
  • 4Lv Jiuming.Luo Jingqing.EKF application based on tracking of flight path[J].APMC 2005 Proceedings,04-07,2005,1:1-4. 被引量:1
  • 5Raroaq M,Bruder S.Information type filters for tracking a maneuvering target[J].IEEE Trans.On AES,1990:441-454. 被引量:1
  • 6Zhou Hongren,Kumar K S P.A "current" statistical model and adaptive algorithm for estimating maneuvering targets[J].A IAA Journal,Guidance,Control and Dynamics,1984,7(5):45-52. 被引量:1
  • 7Zhou D H,Frank P M.Strong tracking filtering nonlinear timevarying stochastic systems with colored noise:application to parameter estimation and empirical robustness analysis[J].Int.J.Control,1996,65(2):295-307. 被引量:1
  • 8Applebaum S P, Chapman D J. Adaptive Arrays With Main Beam Constraints [ J ]. IEEE Transactions on Antennas and Propagation, 1976, 24(9) : 650 -662. 被引量:1
  • 9Keh - Chiamg Huamg, Chien - Chung Yeh. Performance Analysis of Derivative Constraint Adaptive Arrays With Pointing Errors [ J ]. IEEE Transactions on Antennas and Propagation, 1992, 40(8) : 975 -981. 被引量:1
  • 10Chang L,Yeh C C. Effect of Pointing Errors on the Performance of the Projection Beamformer[ J]. IEEE Transactions on Antennas and Propagation, 1993, 41(8) : 1045 -1056. 被引量:1

共引文献8

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部