摘要
To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.
To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.
基金
National Hi-tech Research Development Program of China(863 Program,No.2001AA505000-11)