期刊文献+

两间隙毛细管等离子体射流发生器主放电数值模拟 被引量:3

Numerical simulation on main discharges in a two-gap capillary plasma generator
下载PDF
导出
摘要 消融放电毛细管等离子体发生器产生的等离子体射流具有密度高和温度相对低的特性,在许多领域都具有潜在的应用前景。利用1维流体模型对两间隙毛细管等离子体射流发生器的主放电特性进行了模拟计算分析。模型考虑了焦耳热效应和管壁烧蚀对放电特性的影响。在管壁消融这种反馈稳定机制作用下,毛细管放电处于准稳态,其产生的等离子体温度在放电期间保持恒定。在放电能量为1 kJ的条件下,聚乙烯毛细管等离子体温度可达3 eV,电子密度可达1025m-3量级,射流速度接近10 km/s。改变放电输入的焦耳热功率密度,等离子体温度和速度变化较小,但气压、质量密度以及等离子体电子密度等特性参数均可以获得较大幅度的改变。 Ablative capillary discharge plasma jets are characterized by high density and relatively low temperature. The devices of this kind of plasma jets are of importance to a variety of applications. Two-gap capillary plasma generator(TGCPG) is a realistic alternative to the conventional capillary in electrothermal launchers and a versatile capillary plasma generator for other applications. A one-dimensional hydrodynamic model considers which the ohmic heating and wall ablation is proposed for calculating the properties of plasma arcs of the main discharges in TGCPG. The calculation shows that the discharge is in a quasi-steady state, the plasma temperature keeps stable during the discharge while the mass density and pressure are drastically changed. With 1 kJ discharge energy, a plasma jet with temperature of 3 eV, electron density of 10^25m^-3, flow velocity of 10 km/s is generated by the TGCPG. The properties of the plasma jet can be optimized by changing the input ohmic power.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2008年第6期989-993,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金资助课题(59977007)
关键词 毛细管放电 消融控制电弧 等离子体发生器 等离子体射流 数值模拟 Capillary discharge Ablation controlled arc Plasma generator Plasma jet Numerical simulation
  • 相关文献

参考文献11

  • 1Liu K F, Xia S G, Qin S H, et al. A novel capillary plasma switch(CPS) for electrothermal launchers[J]. IEEE Trans Magn, 2003, 39 (1) :398-401. 被引量:1
  • 2夏胜国,刘克富,刘明海,潘垣.高能毛细管放电技术的应用综述[J].高电压技术,2001,27(5):32-33. 被引量:6
  • 3Loeb A, Kaplan Z. A theoretical model for the physical processes in the confined high pressure discharge of electrothermal launchers[J]. IEEE Trans Magn , 1989, 25(1) :342-354. 被引量:1
  • 4Wald S, Appelbaum G, Pokryvailo G, et al. Hazardous waste treatment and recovery of valuable products with a thermal pulsed-plasma technology[J]. IEEE Trans Plasma Sci, 2000, 28(5):1576. 被引量:1
  • 5Wald S,Appelbaum G, Alimi R, et al. Hard coatings of metals and ceramics with a new electro-thermal- chemical gun technology[J]. International Journal of Refractory Metals and Hard Materials, 1999, 171:7-10. 被引量:1
  • 6Rott M, Igenbergs E. New monopulse plasma generation and acceleration facility for surface treatment[J]. IEEE Trans Magn, 2001, 37 (1) :232-235. 被引量:1
  • 7Peterson D R. Design and operation of the electrogun, an electrothermal gun for producing metal and carbon plasma jets[J]. IEEE Trans Magn, 1997, 33(1) :373-376. 被引量:1
  • 8Hirschfelder J O, Curtiss C F, Bird R B. Molecular theory of gases and liquids[M]. New York, John Wiley and Sons, 1954. 被引量:1
  • 9Griem H R. High-density corrections in plasma spectroscopy[J]. Phys Rev, 1962, 128:997-998. 被引量:1
  • 10Batteh J, Powell J, Sink D, et al. A methodology for computing thermodynamic and transport properties of plasma mixtures in ETC injectors[J]. IEEE Trans Magn, 1995, 31(1) :388-393. 被引量:1

二级参考文献10

  • 1[1]Powell J D, Zielinski A E. Theory and experiment for an ablating capillary discharge and application to electrothermal-chemical guns. BRL-3355, 1992 被引量:1
  • 2[2]Zoler D, Cuperman S A. Time-dependent model for high-pressure discharges in narrow ablative capillaries. Plasma Physics, 1993, 50:51 被引量:1
  • 3[3]Melnek D et al. ETC technology development at soreq NRC, Israel. IEEE Trans Magnetics, 1999, 35(1):31 被引量:1
  • 4[4]Wald S et al. Hazardous waste treatment and recovery of valuable products with a thermal pulsed-plasma technology. IEEE Trans P S, 2000, 28(5):1576 被引量:1
  • 5[5]Wald S et al. Hard coatings of metals and ceramics with a new electrothermal-chemical gun technology. International Journal of Refractory metals & hard Materials, 1999, 171:7 被引量:1
  • 6[6]Rott M, Igenbergs E. New monopulse plasma generation and acceleration facility for surface treatment. IEEE Trans Magnetics, 2001, 37(1):232 被引量:1
  • 7[7]Peterson D R. Design and operation of the electrogun, an electrothermal gun for producing metal and carbon plasma jets. IEEE Trans Magnetics, 1997, 33(1):373 被引量:1
  • 8[8]Salge G H et al. Mass acceleration by plasma pulse. IEEE Trans Magnetics, 1989, 25(1):495 被引量:1
  • 9[9]Rott M. The LRT/TUM small caliber electrothermal accelerator. IEEE Trans Magnetics, 1993,29(1):597 被引量:1
  • 10[10]Shcolnikov E Y et al. Flow dynamics and microparticles acceleration in the electrothermal launcher. IEEE Trans magnetics, 1999, 35(1):240 被引量:1

共引文献5

同被引文献53

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部