期刊文献+

具有二步保费的Erlang(2)风险模型(英文)

The Erlang(2) Risk Model with a Two-step Premium Rate
下载PDF
导出
摘要 本文考虑了当索赔间隔时间为Erlang(2)分布且保费收取为二步保费过程的复合更新风险模型,推导出该模型的罚金折现期望值函数满足具有一定边界条件和积分微分方程,并解出该方程.特别地,当索赔额为指数分布时,利用所得结果给出了破产时间的Laplace变换及终积破产概率的解析解. In this paper, we consider a compound renewal risk process with a two-step premium rate in which the claim waiting times are Erlang(2) distributed. An integro-differential equation with certain boundary condition for Gerber-Shiu function is derived and solved,and use this result we obtain the explicit result about the Laplace transform of the time of ruin and ruin probability when the claim sizes are exponentially distributed,
出处 《应用数学》 CSCD 北大核心 2008年第3期612-621,共10页 Mathematica Applicata
关键词 复合更新过程 Erlang(2)分布 积分微分方程 罚金折现期望值函数 破产时刻 二步保费 Compound renewal process Erlang ( 2 ) distribution Integro-differential equation Gerber-Shiu dicounted penalty function Time of ruin two-step premium
  • 相关文献

参考文献12

  • 1Dickson D C M. On a class of renewal risk process[J]. North American Actuarial Journal, 1998,2 (3):60-68. 被引量:1
  • 2Dickson D C M. Hipp C. On the time to ruin for Erlang(2) risk process[J]. Insurance: Mathematics and Economics, 2001,29: 333 - 334. 被引量:1
  • 3Cheng Y,Tang Q. Moments of surplus before ruin and deficit at ruin in the Erlang(2) risk process[J]. North American Actuarial Journal,2003,7(1):1-12. 被引量:1
  • 4Li S, Garrido J. On ruin for the Erlang( n ) risk process[J]. Insurance: Mathematics and Economics, 2004,34:391-408. 被引量:1
  • 5Li S,Garrido J. On a class of renewal risk models with a constant dividend barrier[J]. Insurance: Mathematics and Economics, 2004,35 : 691-701. 被引量:1
  • 6Lin X S,Pavlova K P. The compound Poisson risk model with a threshold dividend strategy[J]. Insurance:Mathematics and Economies, 2006,38: 57-80. 被引量:1
  • 7Zhang H Y, Zhou M,Guo J Y. The Gerber-Shiu discounted penalty function for classical risk model with a two-step premium rate[J]. Statistics& Probability Letters, 2006,76 : 1211-1218. 被引量:1
  • 8Gerber H U,Shiu E S W. On the time value of ruin[J]. North Ameircan Actuarial Journal,1998,2(1) :48 -78. 被引量:1
  • 9Lin X S,Willmot G E, Drekic S. The classical risk model with a constant divident barrier: analysis of the Gerber-Shiu discounted penalty function[J]. Insurance:Mathematics and Economics,2003,33: 551-566 被引量:1
  • 10Gerber H U,Shiu E S W. Discussion of Y. Cheng and Q. Tangs "Moment of the surplus before ruin and the deficit at ruin"[J ]. North American Actuarial Journal, 2003,7 (3) :117 - 119. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部