摘要
目前证据推理理论算法的改进仍然是热门的方向,其应用也越来越广,因此主要介绍了当前证据推理理论的两种最新的改进思想-最新的DSmT理论以及比例冲突再分配(PCR)方法;归纳总结了证据理论的主要应用及其在应用中的关键问题之一——基本置信指派的主要构造方法;最后利用人工神经网络训练数据的方法构造基本置信指派,对比例冲突再分配(PCR5)方法在序列图像目标识别中的应用进行了仿真分析,仿真实验结果表明该算法可以有效地提高序列图像目标识别的准确性。
At present, the improvement of arithmetic of evidence reasoning is still a pop direction, and its application is becoming more and more extensive, so the paper introduces two latest improved ideas in evidence reasoning: the latest DSmT theory and Proportional Conflict Redistribution theory, summarizes the main methods for constructing Basic Believe Assign (BBA) functions. At last, a sequential image recognition algorithm based on BP Neural Network (BPNN) and Proportional Conflict Redistribution (PCR) theory is presented, and the simulation results show that the method is effective.
出处
《计算机仿真》
CSCD
2008年第6期202-205,共4页
Computer Simulation
关键词
证据推理
比例冲突再分配
基本置信指派
序列图像
Evidence reasoning
Proportional conflict redistribution (PCR)
Basic believe assign
Sequential image