期刊文献+

It随机微分方程的一个反问题 被引量:1

An Inverse Problem of It5 Stochastic Differential Equation
原文传递
导出
摘要 对于一个含有未知参数的It(?)随机微分方程中,针对某一实际问题,如果该方程解的值可以量测得到,则可以依据这些量测值,反求方程的未知参数.这就是本文考虑的It(?)随机微分方程之反问题.本文将其转化成一个优化问题,首先研究了It(?)方程的解关于参数的连续依赖性及可微性,进而计算出优化目标泛函关于参数的梯度,最后使用拟牛顿信赖域法来确定未知参数的最佳近似值. Considering an ItO stochastic differential equation with the unknown parameters, if the solution of the equation could be measured in some actual situations, then the unknown parameters could be computed based on the measured value, it is known as the inverse problem of ItO stochastic differential equation. In this paper, the inverse problem is converted into a optimization problem At first, the continuous dependence and differe- niability of solution of equation upon the parameters are discussed, and then, the gradient of the objective function upon the parameters is worked out,at last, the best approximate values of parameters are obtained by the methods of Quasi-Newton Trust Region.
作者 赵玉环
出处 《应用数学学报》 CSCD 北大核心 2008年第2期314-323,共10页 Acta Mathematicae Applicatae Sinica
基金 国家863基金(2006AA12A113) 中国民航大学基金(04-CAUC-20s) 天津市自然科学基金(06YFJMJC12500)资助项目.
关键词 ItO^随机微分方程 拟牛顿信赖域法 目标泛函对参数的梯度 ItO stochastic differential equation quasi-Newton trust region method gradient of a objective functional with repect to the parameters.
  • 相关文献

参考文献5

  • 1Balakrishnan A V. Stochastic Differential Systems Ⅰ. Berlin, Heidelberg, New York: Springer-Verlag, 1973 被引量:1
  • 2Hartman P. Ordinary Differential Equation, 2nd ed. Boston, Stuttgart: Birkhauser, 1982 被引量:1
  • 3Friedman A. Stochastic Differential Equations and Applications, V.I. New York, San Francisco, London: Acaclemic Press, 1975 被引量:1
  • 4Wang Zikun. Stochastic Processes Theory. Beijing: Science Press, 1978 被引量:1
  • 5Yuan Yaxiang, Sun Wenyu. Theory and Methods of Optimization. Beijing: Science Press, 1997 被引量:1

同被引文献13

  • 1BENSOUSSAN A.Control of stochastic partial differential equations [ M]//RAY W H,LAINIOTIS D G.Distributed Parameter Systems:Identification,Estimation,and Control.New York:Marcel Dekker Inc,1978. 被引量:1
  • 2KRYLOV N V.An analytic approach to SPDE's[ M]//CARMONA R A,ROZOVSKII B.Stochastic Partial Differential Equations-IX.Providence:American Mathematical Society,1999. 被引量:1
  • 3KRYLOV N V,ROZOVSKIIS B L.Stochastic evolution equations [J].Journal of Soviet Mathematics,1981,16(4):1233-1277. 被引量:1
  • 4OMATU S,SEINFELD J H.Distributed parameter systems:theory and applications IMp.Oxford,UK:Oxford Science Publications,1989. 被引量:1
  • 5FRIEDMAN A.Stochastic differential equations and applications [ M].New York:Academic Press,1975. 被引量:1
  • 6AHMED N U.Optimization and identification of systems governed by evolution Equations in Banach space [ M].Liverpool:Longman Scientific and Technical Press,1988. 被引量:1
  • 7BAL G.Inverse problems in random media:a kinetic approach [J].Journal of Physics Conference Serie's,2008,124(1):012001.1-012001.21. 被引量:1
  • 8IBRAGIMOR I A,KRAS'MINSKII R Z.Estimation problems for coefficients of stochastic partial differential equations [J].SIAM Theory of Probability and Applications,2000,45(2):210-232. 被引量:1
  • 9LOTOTSY S V.Statistical inference for stochastic parabolic equations:a spectral approach [ J ].Publications Matematiques,2009,53:3-45. 被引量:1
  • 10MAUNUKSELA J,MYLLYS M,MERIKOSKI J,et al.Determination of the stochastic evolution equation from noisy experimental data[ J].The European Physical Journal B:Condensed Matter and Complex Systems,2003,33(2):192-202. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部