期刊文献+

On Conditionally Positive Definite Dot Product Kernels

On Conditionally Positive Definite Dot Product Kernels
原文传递
导出
摘要 Let m and n be fixed, positive integers and P a space composed of real polynomials in m variables. The authors study functions f : R →R which map Gram matrices, based upon n points of R^m, into matrices, which are nonnegative definite with respect to P Among other things, the authors discuss continuity, differentiability, convexity, and convexity in the sense of Jensen, of such functions Let m and n be fixed, positive integers and P a space composed of real polynomials in m variables. The authors study functions f : R →R which map Gram matrices, based upon n points of R^m, into matrices, which are nonnegative definite with respect to P Among other things, the authors discuss continuity, differentiability, convexity, and convexity in the sense of Jensen, of such functions
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第7期1127-1138,共12页 数学学报(英文版)
基金 PROCAD-CAPES,Grant # 0092/01-0
关键词 conditionally positive definite kernels dot product kernels Gram matrices CONVEXITY convexity in the sense of Jensen conditionally positive definite kernels, dot product kernels, Gram matrices, convexity, convexity in the sense of Jensen
  • 相关文献

参考文献20

  • 1Berg, C., Christensen, J. P. R., Ressel, P.: Harmonic analysis on semigroups, Theory of positive definite and related functions, Graduate Texts in Mathematics, 100, Springer-Verlag, New York, 1984. 被引量:1
  • 2Christensen, J. P. R., Ressel, P.: Positive definite kernels on the complex Hilbert sphere. Math. Z., 180(2), 193-201 (1982). 被引量:1
  • 3FitzGerald, C. H., Micchelli, C. A., Pinkus, A.: Functions that preserve families of positive semidefinite matrices. Linear Alqebra Appl., 221, 83-102 (1995). 被引量:1
  • 4Hertz, C. S.: Fonctions operant sur les fonctions definies-positive. Ann. Inst. Fourier (Grenoble), 13, 161-180 (1963). 被引量:1
  • 5Horn, R, A.: The theory of infinitely divisible matrices and kernels. Trans. Amer. Math. Soc., 136, 269-286 (1969). 被引量:1
  • 6Horn, R. A., Johnson, C. R.: Matrix analysis, Cambridge University Press, Cambridge-New York, 1985. 被引量:1
  • 7Lu, F., Sun, H.: Positive definite dot product kernels in learning theory. Adv. Comput. Math., 22(2), 181-198 (2005). 被引量:1
  • 8Menegatto, V. A., Peron, A. P., Oliveira, C. P.: Conditionally positive definite dot product kernels. J. Math. Anal. Appl., 321(1), 223 241 (2006). 被引量:1
  • 9Vasudeva, H.: Positive definite matrices and absolutely monotonic functions. Indian J. Pure Appl. Math., 10(7), 854-858 (1979). 被引量:1
  • 10Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. Amer. Math. Soc. (N.S.), 39(1), 1 49 (2002). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部