期刊文献+

多模型ASM及其在人脸面部特征点定位中的应用 被引量:2

Multi-Model ASM and Its Application in Facial Feature Point Location
下载PDF
导出
摘要 为了提高ASM在非均匀光照条件下的人脸面部特征点定位的精确度,提出了一种融合Log-Gabor小波特征的多模型ASM方法.该方法的主要特点有:在精确定位目标图像虹膜位置的基础上对全局形状模型进行较准确的初始化;特征点局部纹理特征采用灰度和Log-Gabor小波特征共同描述,减少光照和噪音对算法的影响;建立包括全局ASM和基于人脸面部显著特征区域的局部ASM的多模型ASM,交替使用这两种ASM模型在边缘约束策略基础上对特征点的定位结果进行约束.实验表明,多模型ASM算法对人脸面部特征点定位的准确率比传统ASM算法有明显提高. Active shape model is one of the most popular methods for facial feature point location. To improve its accuracy with variance expressions and under non-linear illumination, a multi-model ASM method which integrates Log-Gabor wavelet features is proposed. Irises were located accurately firstly and then utilized to initialize the global ASM; the gray and Log-Gabor wavelet were used to depict the character of each feature point to decrease the effect of illumination and noise, global ASM and local ASM were built respectively and used to constrain feature point location alternately. Experimental result shows that multi-ASM can achieve much higher accuracy than the traditional ASM algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第6期105-107,111,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(60475021)
关键词 主动形状模型 LOG-GABOR小波 特征点定位 active shape models log-gabor wavelet feature points location
  • 相关文献

参考文献5

二级参考文献23

  • 1宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 2崔屹.图像处理与分析—数学形态学方法及应用[M].北京:科学出版社,2002.16. 被引量:3
  • 3Wu H S, Barba J, Gil J. A parametric fitting algorithm for segmentation of cell images [J]. IEEE Transactions on Biomedical Engineering, 1998,3(45) : 400. 被引量:1
  • 4Chalana V, Kim Y. A methodology for evaluation of boundary detection algorithms on medical images [J]. IEEE Transactions on Medical Imaging, 1997, 16(5): 642-652. 被引量:1
  • 5Wu Kenong, Gauthier David, Levine Martin D. Live cell image segmentation[J]. IEEE Transactions on Biomedical Engineering, 1995,42(1) :1-12. 被引量:1
  • 6Riopka T P,Boult T.The eyes have it[C] //Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications.Berkley,California:ACM Press,2003:9-16 被引量:1
  • 7Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Kauai,HI:IEEE Computer Society,2001:511-518 被引量:1
  • 8Rowly H,Baluja S,Kanade T.Neural network-based face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23-38 被引量:1
  • 9Henry S,Takeo K.A statistical model for 3D object detection applied to faces and cars[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Hilton Head Island,SC:IEEE Computer Society,2000:746-751 被引量:1
  • 10Zhou Zhihua,Geng Xin.Projection functions for eye detection[J].Pattern Recognition,2004,37(5):1049-1056 被引量:1

共引文献19

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部