期刊文献+

结合矢通分裂的差分格式 被引量:1

The Scheme Based on Flux Vector Splitting
下载PDF
导出
摘要 将Steger-Warming矢通分裂方法和NND格式相结合,构成一种基于Steger-Warming矢通分裂且能自动捕捉激波的差分方法.通过对激波管的数值分析,表明该算法解决了Steger-Warming矢通分裂方法在特征值变号点附近存在数值解振荡的问题,具有良好的计算精度和计算效率. The NND scheme based on Steger-Warming flux vector splitting is presented, and the flow field of shock wave tube is calculated by the finite difference method. It is shown that the numerical oscillation brought by Steger-Warming flux vector splitting is restrained. The finite difference method has fine precision and efficiency.
出处 《郑州大学学报(理学版)》 CAS 2008年第2期39-41,共3页 Journal of Zhengzhou University:Natural Science Edition
基金 国防科工委科学基金资助项目,编号A2120060004
关键词 矢通分裂 NND差分格式 激波捕捉 flux vector splitting NND scheme shock wave capturing
  • 相关文献

参考文献8

  • 1苏铭德,黄素逸编著..计算流体力学基础[M].北京:清华大学出版社,1997:497.
  • 2Harten A. High resolution schemes for hyperbolic conservation laws[J]. J Comput Phys, 1983,49:357-393. 被引量:1
  • 3Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics:a Practical Introduction[M]. 2nd ed. Springer- Verlag, 1999. 被引量:1
  • 4Steger J L, Warming R F. Flux vector splitting of the inviscid gas dynamic equations with application to finite difference method [J]. J Comput Phys, 1981,40 : 263-293. 被引量:1
  • 5Drikakis D, Tsangaris S. On the solution of the compressible Navier-Stokes equations using improved flux vector splitting methods [J]. Appl Math Model, 1993,17:282-296. 被引量:1
  • 6Van Leer B. Flux vector splitting for the Euler equations [J]. Lecture Notes in Physics, 1982,170:507-512. 被引量:1
  • 7张涵信.无波动,无自由参数的耗散格式[J].空气动力学学报,1988,6(2). 被引量:4
  • 8Zhang Hanxin, Zhuang Fenggan. NND schemes and their application to numerical simulation of two and three dimensional flows[J]. Advances in Applied Mechanics, 1992,29:193-256. 被引量:1

共引文献3

同被引文献8

  • 1Zhang Tong, Xiao Ling. The Riemann Problem and Interaction of Waves in Gas Dynamics [ M ]. New York : Longman Scientific & Technical, 1989:3 - 161. 被引量:1
  • 2Godunov S K. A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics [ J ]. Math Sb, 1959, 47(1) :357 -393. 被引量:1
  • 3Ben-Artzi M. The generalized Riemann problem for reactive flows [ J ]. J comput Phys, 1989,81 (1) :70 -101. 被引量:1
  • 4Ben-Artzi M, Li Jiequan, Warnecke G. A direct Eulerian GRP scheme for compressible fluid flows [ J ]. J comput Phys, 2006, 218(1) :19 -43. 被引量:1
  • 5Li Yinfan, Cao Yiming. "Large-particle" difference method with second order accuracy in gas dynamics [ J ]. Scientia Sinica: Series A, 1985, 28(10): 1024-1035. 被引量:1
  • 6Li Jiequan, Zhang Tong, Yang Shuli. The Two-dimensional Riemann Problem in Gas Dynamics [ M ]. New York: Longman Sci- entific & Technical, 1998 : 157 - 159. 被引量:1
  • 7王保军,王景泉.压差方程的HLL逼近黎曼格式[J].南阳师范学院学报,2008,7(3):26-28. 被引量:1
  • 8王保军,张炳侠.压差方程的Godunov格式[J].南阳师范学院学报,2008,7(12):10-13. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部