期刊文献+

强迫谐振动下连续体结构拓扑优化 被引量:7

TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURE WITH FREQUENCY RESPONSE CONSTRAINTS
下载PDF
导出
摘要 应用结构拓扑优化ICM(独立连续映射)方法,对强迫谐振动下结构拓扑优化问题建立了以重量极小为目标,位移幅值为约束的优化模型.位移幅值采用一阶泰勒展式近似,由于拓扑优化中设计变量数目通常很多,对强迫谐振动位移幅值的敏度分析推导了伴随法公式,使得一次敏度分析可以计算出对所有设计变量的偏导数,克服了采用直接法敏度分析中一次只能计算出对一个设计变量的偏导数的不足.算例表明用伴随法分析敏度在结构拓扑优化中可以大幅提高计算效率,ICM方法采用独立于截面及形状参数的拓扑优化设计变量更清晰地反映了拓扑优化的本质. Based on ICM(Independent Continuous Mapping) method of structural topology optimiza tion, a model with weight minimum objective and displacement amplitude constraints is established for the topology optimization problem of continuum structure. The displacement amplitude is close expressed by the first order Taylor expression. With a view to that there are always many design variables in the topolo- gy optimization, and the partial derivatives with respect to one design variable can be obtained from a sen sitivity analysis in the direct method, an adjoint method of sensitivity analysis of displacement amplitude with frequency response is developed and the partial derivatives with respect to all design variables can be obtained from a sensitivity analysis. Numeric examples reveal that the computational efficiency can be improved dramatically if sensitivities are analyzed by the adjoint method. Adopting the topology variables which independent of size and shape parameters of structure in ICM method reflects the essence of topology optimization more clearly.
出处 《固体力学学报》 CAS CSCD 北大核心 2008年第2期157-162,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(10272006,30470439) 北京市中青年骨干教师培养计划专项资助
关键词 强迫谐振动 敏度分析 伴随法 拓扑优化 frequency response, sensitivity analysis, adjoint method, topology optimization
  • 相关文献

参考文献11

  • 1Gradhi R. Structural optimization with frequency constraints a review[J]. AIAA Journal, 1993, 31(12) : 2296- 2303. 被引量:1
  • 2彭细荣,隋允康.有频率禁区的连续体结构拓扑优化[J].固体力学学报,2007,28(2):145-150. 被引量:16
  • 3Ma Z D, Kikuchi N, Hagiwara I. Structural topology and shape optimization for a frequency response problem [J]. Computational Mechanics, 1993, 13 (3) : 157-174. 被引量:1
  • 4Nalecz A G, Wicker J. Design sensitivity analysis of mechanical system in frequency domain[J]. Journal of Sound and Vibration, 1988, 120(3): 517-526. 被引量:1
  • 5Livne E, Blando G D. Structural dynamic frequency response using combined direct and adjoint reduced or der approximations[J]. AIAA Journal, 2003, 41(7) : 1377-1385. 被引量:1
  • 6董绍强,廖道训,陆永忠.结构频率响应灵敏度计算及响应修改研究[J].华中科技大学学报(自然科学版),2001,29(10):56-58. 被引量:2
  • 7Sadek E A. Minimum weight design of structures under frequency and frequency response constraints[J]. Computers & Structures, 1996, 60(1): 73-77. 被引量:1
  • 8Qu Z Q. Accurate methods for frequency responses and their sensitivities of proportionally damped systems[J]. Computers and Structures 2001, 79(1): 87- 96. 被引量:1
  • 9隋允康著..建模·变换·优化 结构综合方法新进展[M].大连:大连理工大学出版社,1996:435.
  • 10Sui Y K: Modeling transformation and optimization new developments of structural synthesis method. Dalian University of Technology Press, Dalian, 19 9 6. ( in Chinese) 被引量:1

二级参考文献20

  • 1隋允康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性[J].工程力学,2005,22(S1):107-118. 被引量:63
  • 2隋允康,张学胜,龙连春,边炳传.位移约束集成化处理的连续体结构拓扑优化[J].固体力学学报,2006,27(1):102-107. 被引量:10
  • 3Ting T,Finite Element Model Refinement with Actual Forced Responseof Structures Finite Element in Analysis,1992年,11期,213页 被引量:1
  • 4Yu Chenting,Computers Structures,1990年,36卷,6期,1013页 被引量:1
  • 5BENDSOE M P,KIKUCHI N.Generating optimal topologies in structural design using a homogenizationmethod[J].Computer Methods in Applied Mechanics and Engineering,1998,71(1):197-224. 被引量:1
  • 6YANG R J.Topology optimization analysis withmultiple constraints[J].American Society of Mechanical Engineers,Design Engineering Division,1995,82(1):393-398. 被引量:1
  • 7XIE Y M,STEVEN G P.Simple evolutionary proce-dure for structural optimization[J].Computers and Structures,1993,49(5):885-896. 被引量:1
  • 8SUI Y K.ICM method of topological optimization for truss,frame and continuum structure[C].WWCSMO-4,Dalian,2001. 被引量:1
  • 9BENDSOE M P,DIAZ A R,LIPTON R,et al.Optimal design of material properties and material distribution for multiple loading conditions[J].International Journal for Numerical Methods in Engineering,1995,38(7):1149-1170. 被引量:1
  • 10ZHOU M,ROZVANG G I N.On the validity ofESO type methods in topology optimization[J].Structural and Multidisciplinary Optimization,2001,21(1):80-83. 被引量:1

共引文献24

同被引文献97

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部