期刊文献+

High Precision Prediction of Rolling Force Based on Fuzzy and Nerve Method for Cold Tandem Mill 被引量:6

High Precision Prediction of Rolling Force Based on Fuzzy and Nerve Method for Cold Tandem Mill
原文传递
导出
摘要 The rolling force model for cold tandem mill was put forward by using the Elman dynamic recursive network method,based on the actual measured data.Furthermore,a good assumption is put forward,which brings a full universe of discourse self-adjusting factor fuzzy control,closed-loop adjusting,based on error feedback and expertise into a rolling force prediction model,to modify prediction outputs and improve prediction precision and robustness.The simulated results indicate that the method is highly effective and the prediction precision is better than that of the traditional method.Predicted relative error is less than ±4%,so the prediction is high precise for the cold tandem mill. The rolling force model for cold tandem mill was put forward by using the Elman dynamic recursive network method,based on the actual measured data.Furthermore,a good assumption is put forward,which brings a full universe of discourse self-adjusting factor fuzzy control,closed-loop adjusting,based on error feedback and expertise into a rolling force prediction model,to modify prediction outputs and improve prediction precision and robustness.The simulated results indicate that the method is highly effective and the prediction precision is better than that of the traditional method.Predicted relative error is less than ±4%,so the prediction is high precise for the cold tandem mill.
出处 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第2期23-27,共5页
基金 Item Sponsored by Natural Science Foundation of Hebei Province of China(E2004000206) National Natural Science Foundation of China(50675186)
关键词 Elman dynamic recursive network fuzzy control cold tandem mill rolling force PREDICTION Elman dynamic recursive network fuzzy control cold tandem mill rolling force prediction
  • 相关文献

参考文献11

  • 1王常虹,徐立新,庄显义,高晓智.一种局部递归神经网络模型及其在动态系统辨识中的应用[J].哈尔滨工业大学学报,1998,30(4):21-24. 被引量:8
  • 2Nicolau V,Aiordachioaie D,Popa R.Neural Network Predic-tion of the Wave Influence on the Yaw Motion of a Ship[].IEEEInternational Joint Conference on Neural Networks.2004 被引量:1
  • 3Ishii T,Wada S,Miyokawa M,et al.Recent Technology in Hot Strip Mill[].Proceedings of theth In-ternational Conference on Steel Rolling.1998 被引量:1
  • 4SUN Zeng-yin,ZHANG Zai-xing,DENG Zhi-dong.Intelli-gent Control Theory and Technology[]..1997 被引量:1
  • 5Kieltyka L,Kuceba R,Sokolowski A.Application of Neural Network Topologies in the Intelligent Heat Use Prediction Sys-tem[].Artificial Intelligence and Soft Computing-ICAISCProceedings.2004 被引量:1
  • 6Ganjefar S,Janabi-Sharifi F,Hosseinipanah S M A,et al.Pre-diction of Delay Timein Internet by Neural Network[].IEEEInternational Conference on Control Applications.2005 被引量:1
  • 7Panella M,Rizzi A,Martinelli G.Refining Accuracy of Envi-ronmental Data Prediction by MoG Neural Networks[].Neu-rocomputing.2003 被引量:1
  • 8Andreas Draeger,Sebastian Engell,Horst Ranke.Model Predictive Control Using Neural Networks[].IEEE Control Systems Magazine.1995 被引量:1
  • 9K S Narendra,K Parthasarathy.Identification and control of dynamical systems using neural networks[].IEEE Transactions on Neural Networks.1990 被引量:1
  • 10Nicklause F Portmann,Dieter Lindhoff,Gunter Sorgel,et al.Application of Neural Networks in Rolling Mill Automation[].Iron and Steel Engineer.1995 被引量:1

共引文献7

同被引文献34

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部