期刊文献+

可压缩Navier-Stokes方程组解的全局存在性和渐近性注记(英文)

Remarks on Global Existence and Asymptotic Behavior for the Compressible Navier-Stokes Equations
下载PDF
导出
摘要 讨论在有非自治外力和热源的情况下,一般粘性热传导可压缩气体在有界区域上的一维运动,研究了可压的Navier-Stokes气体方程组解的全局存在性和渐近性.文中利用估计式1+sup0≤s≤t‖θ(t)‖L∞及渐近性引理来证得这些结果. In this paper, we prove the global existence and asymptotic behavior, as time tends to infinity, of solutions in H^2 to the initial boundary value problem of the compressible Navier-Stokes equations of one-dimensional motion of a viscous heat conducting gas in a bounded region with a non-autonomous external force and a heat source. The expression 1 +sup0≤s≤t‖θ(t)‖L^∞ and the asymptotic lemma are used to prove these results.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2008年第4期331-338,共8页 Journal of Henan University:Natural Science
基金 The Nation Natural Science Foundation of China(10571024)
关键词 全局存在性 渐近性 一致先验估计 global existence asymptotic behavior a uniform priori estimates
  • 相关文献

参考文献8

  • 1Amosov A A, Zlotnik A A. Global generalized solutions of the wquations of the one-dimensional motion of a viscous heatconducting gas [J]. Soviet Math Dokl, 1989,38 ( 1 ) : 1 - 5. 被引量:1
  • 2Qin Y, Zhao Y. Global existence and asymptotic behavior of compressible Navier-Stokes equations for a 1-Disothermal viscous gas [M].Preprint,2006. 被引量:1
  • 3Mucha P B. Compressible Navier-Stokes system in 1-D [J]. Math Meth Appl Sci, 2001(24):607-622. 被引量:1
  • 4Shigenori Yanagi. Existence of periodic solutions for a one-dimensional isentropic model system of compressible viscous gas[J]. Nonlinear Analysis, 2001 (46) : 279- 298. 被引量:1
  • 5Qin Y, Wu Y, Liu F. On the Cauchy problem for a one-dimensional compressible viscous polytropic ideal gas[J]. Portugaliae Math, 2007(64): 87-126. 被引量:1
  • 6Qin Y. Global existence and asymptotic behaviour for a viscous, heat-conducting one-dimensional real gas with fixed and thermally insulated end points [J]. Nonlinear Analysis,2001(44) : 413-441. 被引量:1
  • 7Qin Y. Global existence and asymptotic behaviour of solutions to a system of equations for a nonlinear one-dimensional viscous, heat-conducting real gas [J].Chinese Ann Math Ser A, 1999(20): 343-354. 被引量:1
  • 8Qin Y. Exponential stability for a nonlinear one-dimensional heat conductive viscous real gas[J]. Journal of Mathematical Analysis and Applications, 2002(272) : 507-535. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部