摘要
讨论在有非自治外力和热源的情况下,一般粘性热传导可压缩气体在有界区域上的一维运动,研究了可压的Navier-Stokes气体方程组解的全局存在性和渐近性.文中利用估计式1+sup0≤s≤t‖θ(t)‖L∞及渐近性引理来证得这些结果.
In this paper, we prove the global existence and asymptotic behavior, as time tends to infinity, of solutions in H^2 to the initial boundary value problem of the compressible Navier-Stokes equations of one-dimensional motion of a viscous heat conducting gas in a bounded region with a non-autonomous external force and a heat source. The expression 1 +sup0≤s≤t‖θ(t)‖L^∞ and the asymptotic lemma are used to prove these results.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2008年第4期331-338,共8页
Journal of Henan University:Natural Science
基金
The Nation Natural Science Foundation of China(10571024)
关键词
全局存在性
渐近性
一致先验估计
global existence
asymptotic behavior
a uniform priori estimates