期刊文献+

具时滞和脉冲的捕食者-食饵模型的动力学性质

The Dynamics of Predator-Prey Model with Impulsive and Time Daley
原文传递
导出
摘要 基于害虫的生物控制和化学控制策略,考虑到化学杀虫剂对天敌的影响,利用脉冲微分方程建立了在不同的固定时刻分别喷洒杀虫剂和释放天敌的具有时滞的第III功能反应的捕食者-食饵脉冲动力系统.证明了当脉冲周期小于某个临界值时,系统存在一个渐进稳定的害虫灭绝周期解,否则系统持续生存.并用Matlab软件对害虫灭绝周期解及害虫周期爆发现象进行了数值模拟. Considering biological control and chemical control strategy and the effects of chemical pesticides on natural enemy, we propose a predator-prey model with III functional response in two different times by using impulsive differential equation. It is proved that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. Otherwise, the system can be permanent. The question of the nontrivial periodic solution off the round of pest-eradication periodic solution is discussed and the phenomenon of the pest-eradication periodic solution and the periodic outburst of pest are simulated by Matlab.
机构地区 南昌大学数学系
出处 《数学的实践与认识》 CSCD 北大核心 2008年第12期80-87,共8页 Mathematics in Practice and Theory
基金 江西省自然科学基金(0611084)
关键词 时滞 脉冲 灭绝 持续生存 delay impulsive extinction permanence
  • 相关文献

参考文献5

二级参考文献20

  • 1Pandit S G. On the stability of impulsively perturbed differential systems. Bull. Austral Math.Soc., 1977, 17: 423-432. 被引量:1
  • 2Simeonov P S, Bainov D D. The second method of Liapunov for systems with impulsive effect.Tamkang J. Math., 1985, 16: 19-40. 被引量:1
  • 3Kulev G K, Bainov D D. On the asymptotic stability of systems with impulses by direct method of Lyapunov. J. Math. Anal. Appl., 1989, 140: 324-340. 被引量:1
  • 4Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses.Math. Biosci., 1998, 149: 23-36. 被引量:1
  • 5Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull. Math.Biol., 1998, 60: 1-26. 被引量:1
  • 6Hirstova S G, Bainov D D. Existence of periodic solution of nonlinear systems of differential equations with impulsive effect. J. Math. Anal. Appl., 1985, 125: 192-202. 被引量:1
  • 7Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math. Comprt. Modelling, 1997, 26: 59-72. 被引量:1
  • 8Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equation. World Science, Singapore, 1989. 被引量:1
  • 9Barclay H J. Model for pest control using predator release, habitat management and pesticide release in combination. J. Applied Ecology, 1982, 19: 337-348. 被引量:1
  • 10Parker F D. Management of pest population by manipulating densities of both host and parasites through periodic releases. In: Huffaker,C.B.,ed. Biological control. New York:Plenum Press., 1971. 被引量:1

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部