期刊文献+

基于协方差的FP-Growth算法在ERP中的研究与应用 被引量:2

FP-Growth Algorithm Based Covariance and Its Application in ERP
原文传递
导出
摘要 文章简要介绍了关联规则挖掘技术,通过对经典算法FP-Growth在某鞋业ERP系统中的应用分析,发现了FP-Growth算法挖掘的部分数据无用的缺陷,提出了一种增加协方差兴趣度阈值的改进算法—CovFP-Growth算法.该算法采用协方差的概念,能够更准确地挖掘出交易集中不同产品间的紧密相关性,减少产生的无用规则,为ERP的产品预测计划决策提供了良好的理论依据和实现方法. This paper introduces association rules mining technology briefly. By analyzing the application of classic FP-Growth algorithm in ERP System, and finds out FP-Growth algorithm's limitation which often generates some useless datas. So this paper gives a CovFP- Growth algorithm Based covariance Measure for Updating FP-Growth. Using the covariance method, CovFP-Growth can mine the close relations among different products in the database, decrease the amount of useless rules and provide effective assistant method for the generating of prediction plan.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第12期11-18,共8页 Mathematics in Practice and Theory
基金 四川省宜宾市科技局科研基金(200702036) 宜宾学院青年基金(QJ05-08)
关键词 协方差 兴趣度 关联规则 FP—Growth CovFP—Growth ERP covariance interest measure association rules FP-Growth CovFP-Growth ERP
  • 相关文献

参考文献8

  • 1A Grawal R, Imielinski T, Swam iA, Mining association rules between set of items in large databases[C]. In Proc of the 1993 ACMSIGMOD Conference on Management of Data, Washington, D C,1993. 207-216. 被引量:1
  • 2范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:120
  • 3Han J, et al, Mining frequent patterns without candidate generation [C], In: Proc of the 2000 ACMSIGMOD Conference on Management of Data, Dallas, TX, 2000. 1-12. 被引量:1
  • 4Srikant R, Agrawal R, Mining generalized association rules[C]. Int Proc of 21th Int'l Conf on Very Large Data Bases Zurich, Switzerland : Morgan Kaufmann, 1995, 407-419. 被引量:1
  • 5Srikant R, Agrawal R. Mining quantitative association rules in large relational tables[C]. In: Proc of 1996 ACM SIGMOD Int'l Conf on Management of Data Montreal, Quebec, Canada: ACM Pres, 1996.1-12. 被引量:1
  • 6Savasere A, Omiecinski E, Navathe S B. Mining for strong negative associations in a large database of customer transactions[C]. In: Proc of the 14^th Int'l Conf on Data Engineering. Orlando, Florida, USA: IEEE Computer Society Press, 1998.494-502. 被引量:1
  • 7陈文伟等著..数据挖掘技术[M].北京:北京工业大学出版社,2002:208.
  • 8李裕奇,刘海燕编..概率论与数理统计[M].北京:国防工业出版社,2004:248.

共引文献119

同被引文献27

  • 1刘川,方思行.基于FPclose算法挖掘强亲密度关联模式[J].计算机工程与设计,2005,26(5):1149-1151. 被引量:1
  • 2梁开健,梁泉,杨炳儒.关联规则挖掘中阈值协调器的设计与实现[J].系统工程与电子技术,2005,27(10):1800-1802. 被引量:3
  • 3马建庆,钟亦平,张世永.基于兴趣度的关联规则挖掘算法[J].计算机工程,2006,32(17):121-122. 被引量:20
  • 4朱明.数据挖掘[M].合肥:中国科学技术大学出版社,2008. 被引量:23
  • 5Han J,Kamber M.数据挖掘概念与技术[M].范明,译.北京:机械工业出版社,2007:32-59. 被引量:26
  • 6AGRAWAL R,IMIELINSKI T,SWAMI A.Mining association rules between sets of items in large databases[C] // SIGMOD '93:Proceedings of the 1993 ACM SIGMOD Conference on Management of Data.New York:ACM,1993:207-216. 被引量:1
  • 7SRIKANT R, AGRAWAL R. Mining generalized association rules[C] // VLDB '95: Proceedings of the 21st International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann, 1995: 407-419. 被引量:1
  • 8SAVASERE A, OMIECINSKI E, NAVATHE S. Mining for strong negative associations in a large database of customer transactions[C] // Proceedings of the 14th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1998: 494-502. 被引量:1
  • 9JALALVAND A, MINAEI B, ATABAKI G, et al. A new interestingness measure for associative rules based on the geometric context[C] //ICCIT '08: Proceedings of the 2008 Third International Conference on Convergence and Hybrid Information Technology. Washington, DC: IEEE Computer Society, 2008: 199-203. 被引量:1
  • 10李裕奇, 赵联文,王沁,等. 非参数统计方法[M].成都: 西南交通大学出版社,2010: 116-119. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部