摘要
研究了广义中立型泛函微分方程x′(t)=Lx(t)+Mx(tτ)+Nx′(tτ)的渐近稳定性.其中L,M,N∈Cd×d,x(tτ)=(x1(t-τ1),x2(t-τ2),…,xd(t-τd))T,τi>0(i=1,…,d)为常数滞时量.给出了两种稳定性标准:与时滞有关的稳定性标准和与时滞无关的稳定性标准.最后给出了寻找不稳定区域的2个数值例子.
We study the asymptotic stability of the generalized neutral delay differential equation (GNDDE) x′(t) = Lx(t) +Mx(tT) +Nx′(tT),where L, M, N∈C^d×d,and x(tT) = (X1(t-T1),X2(t-T2),…,Xd(t-Td))T, Ti 〉 0(i = 1,…,d) are constant delays. We give two stability criteria:delay-independent criteria and delay dependent criteria. At the end of this paper, 2 examples which give the unstable regions of the system are illustrated.
出处
《上海师范大学学报(自然科学版)》
2008年第3期249-256,共8页
Journal of Shanghai Normal University(Natural Sciences)
基金
the Shanghai Leading Academic Discipline Project(T0401)
Shanghai Municipal Education Commission(06DZ001)
关键词
渐近稳定性
对数范数
调和函数
asymptotic stability
logarithmic norm
harmonic function