摘要
该文基于免疫系统的免疫优势概念和抗体克隆选择学说,采用量子位编码,提出了一种量子免疫克隆多目标优化算法,并对算法进行了理论分析;与RWGA、SPEA和MISA等算法的比较表明,该算法对低维多目标优化问题更有效。
Based on the concept of immunodominance, antibody clonal selection theory and quantum bit strategy, a Quantum-inspired Immune Clonal Multiobjective Optimization Algorithm (QICMOA) is proposed. The QICMOA is compared with RWGA, SPEA and MISA in solving low-dimensional problems. The statistical results show that QICMOA has a good performance in converging to true Pareto-optimal fronts with a good distribution.
出处
《电子与信息学报》
EI
CSCD
北大核心
2008年第6期1367-1371,共5页
Journal of Electronics & Information Technology
基金
国家自然科学基金(60703108)
国家"863"计划(2006AA01Z107)
国家"973"项目(2006CB705700)
陕西省自然科学基金(2007F32)资助课题
关键词
人工免疫系统
量子位编码
多目标优化
Artificial immune system
Quantum bit
Multiobjective optimization