期刊文献+

一类两自由度碰撞振动系统的周期运动稳定性与分岔

Stabilty and Bifurcatuons of Periodic Moton in a Two-degree-of-freedom Vibro-Impact System
下载PDF
导出
摘要 本文建立了一类两自由度变碰撞面的碰撞振动系统动力学模型,获得了系统的周期响应,推导出系统n-1周期运动的四维Poincaré映射。利用Poincaré映射方法,对系统单碰撞周期运动的稳定性与分岔进行分析,分析了系统n-1周期运动的Hopf分岔、周期倍化分岔及强共振情况下的亚谐分岔,研究了当分岔参数变化时碰撞振动系统由概周期碰撞运动向混沌运动的演化过程,为冲击振动系统的优化设计提供了理论依据。 A two-degree-of-freedom vibro-impact system is discussed in this paper. Based on the solutions of differential equations between impacts, impact conditions and match conditions of periodic motion, the four-dimension Poincaré maps of n-1 periodic motion are established. The stability of the periodic motions is investigated by the Poincaré map and numerical simulation. Hopf bifurcation, subharmonic in strong resonance case and multi-impact periodic motion are analyzed by local bifurcation criterion and numerical simulation. As controlling parameter varies further, the routes of quasi-periodic impact motions to chaos are studied. It is possible to optimize practical system parameters by investigation of bifurcation and chaos.
出处 《邢台职业技术学院学报》 2008年第3期38-40,共3页 Journal of Xingtai Polytechnic College
关键词 碰撞振动 POINCARÉ映射 稳定性 HOPF分岔 混沌 vibro-impact Poincaré map stability hopfbifurcation chaos
  • 相关文献

参考文献7

  • 1S. Natsiavas. Dynamics of multi-degree-of-freedom oscillators with colliding components. Journal of Sound and vibration, 1993, 165(2): 439-453. 被引量:1
  • 2A. P. Ivanov. Stabilization of an impact oscillator near grazing incidence owing to resonance. Journal of Sound and Vibration, 1993, 162(3): 562-565. 被引量:1
  • 3W. C. Ding. J. H. Xie, Interaction of Hopf and period doubling bifurcations of a vibro-impact system, Journal of Sound and Vibration, 2004, 275(1-2):29- 45. 被引量:1
  • 4李万祥,牛卫中.一类含间隙系统的分岔与混沌的形成过程[J].振动与冲击,2005,24(3):47-49. 被引量:35
  • 5李群宏,陆启韶.一类双自由度碰振系统运动分析[J].力学学报,2001,33(6):776-786. 被引量:27
  • 6Luo Guanwei. Xie Jianhua. Bifurcations and chaos in a system with impacts. Physical D. 148(2001): 183-200. 被引量:1
  • 7Wangcai Ding, Jianhua Xie. Dynamical analysis of a two-parameter family for a vibro-impact system in a resonance cases[J]. Journal of sound and Vibration, 287 (2005) 101-115. 被引量:1

二级参考文献15

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部