期刊文献+

推荐系统中遗漏值解决方法的研究 被引量:2

ON SOLUTIONS OF MISSING VALUES IN RECOMMENDATION SYSTEM
下载PDF
导出
摘要 在推荐系统中用户评分矩阵通常含有大量的遗漏值。这严重影响了协同推荐算法的推荐精度。常用的解决方法是使用缺省值或预测值代替这些遗漏值。通过实验比较了使用不同的替代值的效果,并提出了一种结合矩阵划分和评分预测值的方法。实验结果显示,通过这种方法获得的替代值可以使推荐系统达到更好的推荐质量,尤其是在评分矩阵非常稀疏的情况下。 User's rate matrix generally includes many missing values. It seriously debases the precision of collaborative-base recommendation algorithm. The common approach is that using a default value or prediction value to replace the missing value. In this paper we compare the effect of these approaches via experiment and propose an improved approach which combines rate prediction value with matrix partition. Experimental results show that the substitutive value derived from this method can make system get better recommendation quality, especially in the case of sparse rate matrix.
作者 宗胜 姜丽红
出处 《计算机应用与软件》 CSCD 北大核心 2008年第6期193-195,共3页 Computer Applications and Software
关键词 推荐系统 协同过滤 矩阵划分 评分预测 Recommendation system Collaborative filtering Matrix partition Rate prediction
  • 相关文献

参考文献5

  • 1Belkin N J,Croft W B. Information filtering and information retrieval: Two sides of the same coin? Communications of the ACM 1992,35 (12) :29-38. 被引量:1
  • 2Upendra S, Pattie M. Social information fihering:algorithms for automating "word of mouth". Conference on Human Factors in Computing Systems,Proceedings of the SIGCHI conference on Human factors in computing systems, pp : 210 - 217. 被引量:1
  • 3Bradley N M ,Joseph A K,John R. PocketLens :Toward a Personal Recommender System. ACM Transaction on Information Systems,2004,22 (3) :437-476. 被引量:1
  • 4邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:556
  • 5Sarwar B, Karypis G, Konstan J, Riedl J, Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference,2001:285-295. 被引量:1

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997. 被引量:1
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167. 被引量:1

共引文献555

同被引文献23

  • 1张巍,刘鲁,葛健.一种基于粗集的协同过滤算法[J].小型微型计算机系统,2005,26(11):1971-1974. 被引量:11
  • 2LEE H C. A study on the improved collaborative filtering algorithm for recommender system [ C ]//Proc of the 5th International Conference on Software Engineering Research Management and Applications. Washington DC : IEEE Computer Society, 2007:297- 304. 被引量:1
  • 3WATANABE T, KATAYAMA S, FUJIOKA R. Improvement of collaborative filtering based on fuzzy reasoning model [ C ]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 2006 : 4790- 1795. 被引量:1
  • 4ALMOSALLAM I A, SHANG Yi. A new adaptive framework for collaborative filtering prediction[ C ]//Proc of IEEE Congress on Evolutionary Computation. 2008:2725- 2733. 被引量:1
  • 5BREESE J S, HECKERMAN D, KADI C. Empircal analysis of predictive algorithms for collaborative filtering [ C ]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:43-52. 被引量:1
  • 6HUANG Chong-ben, GONG Song-jie. Employing rough set theory to alleviate the sparsity issue in recommender system [ C ]//Proc of the 7th International Conference on Machine Learning and Cybernetics. 2008 : 1610- 1614. 被引量:1
  • 7SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[ C]//Proc of the 10th International World Wide Web Conference. 2001:285- 295. 被引量:1
  • 8Gediminas Adomavicius, Alexander Tuzhilin, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions [C]//IEEE Transactions on Knowledge and Data Engineering, 2005,17(6) :734-749. 被引量:1
  • 9B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-Based Collaborative Filtering Recommendation Algorithms[C]//Proc. 10th Int'l WWW Conf. , 2001. 被引量:1
  • 10Mukund Ddeshpande, George Karypis, Item-Based Top N Recommendation Algorithms[J]. ACM Transactions on Information Systems, 2004, 22 ( 1 ): 143-177. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部