期刊文献+

一种自适应加权的双向二维线性鉴别分析算法

A bidirectional 2-D linear discriminant analysis algorithm based on an adaptively weighted function
下载PDF
导出
摘要 二维线性鉴别分析是一种直接基于矩阵的特征提取方法,有效地提高了特征提取速度且避免了小样本问题,但是提取的特征向量维数高,不利于后期分类,而且获得的最佳投影矩阵只是来自于图像的列信息.另外,不同的样本在求取最佳投影矩阵时,所起的作用是不一样的,因此提出了一种自适应加权的双向二维线性鉴别分析算法,即是对图像矩阵顺序地进行水平和垂直2个方向的二维线性鉴别分析,自适应加权处理则是使不同的样本带有不同的权值,以提高样本在低维线性空间中的可分性.在ORL和Yale人脸库上的实验结果表明,改进的算法在降低了原算法提取的特征向量维数的同时,较原二维线性鉴别分析的识别性能有了较明显的改善. Two-dimensional linear discriminant analysis extracts feature vectors directly from an image matrix. This improves the speed of feature vector extraction and also eliminates problems posed by small samples. However, the quantity of feature vector data obtained using this method quickly become so large as to make the classification task difficult, and the optimal projective matrix can only be derived from the column direction of the image. Moreover, different samples have different effects on the optimal projective matrix. To solve these weaknesses, we propose a two-dimensional linear discriminant algorithm based on an adaptively weighted function, whereby the image matrix is analyzed bidirectionally. Two-dimensional linear discriminant analysis is done in the horizontal and vertical directions sequentially; the different samples are given different weights so as to improve the performance of classification in the low-dimensional linear space. Numerical experiments on the ORE and Yale facial databases showed that the proposed method outperforms the original two-dimensional linear discriminant analysis algorithm while reducing the feature vector's dimensions.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第5期484-488,共5页 Journal of Harbin Engineering University
基金 中国博士后基金资助项目(20060400809) 黑龙江省青年科技基金资助项目(QC06C022) 哈尔滨工程大学基础研究基金资助项目(HEUFT05068 HEUFT07022 HEUFT05021)
关键词 二维线性鉴别分析 最佳投影矩阵 双向二维线性鉴别分析 白适应 two-dimensional linear discriminant analysis optimal projective matrix bidirectional two-dimensional linear discriminant analysis adaptability
  • 相关文献

参考文献9

  • 1KIRBY M,SIROVICH L. Application of the Karhunen- Loeve procedure for the charaterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 ( 1 ) : 103-108. 被引量:1
  • 2BELHUMEUR P, HESPANHA J, et al. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 ( 7 ) : 711-720. 被引量:1
  • 3SWETS D L,WENG J Y. Using discriminant eigenfeatures for image retrieval[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1996, 18(8) :831-836. 被引量:1
  • 4YU H,YANG J. A direct LDA algorithm for high dimensional data with application to face recognition[J]. Pattern Recognition, 2001,34 (10) :2067-2070. 被引量:1
  • 5HUANG R, LIU Q, LU H. Solving the small size problem of LDA[C]// Proceedings of the 16th International Conference on Pattern Recognition. Quebec City, Canada, 2002: 29-32. 被引量:1
  • 6SITTINON K, YUTTAPONG R. Face recognition using 2DLDA algorithm[C]// Proceedings of the Eighth International Symposium on Signal Processing and Its Applications. Sydney, Australia, 2005: 28-31. 被引量:1
  • 7张生亮,杨静宇.二维投影与PCA相结合的人脸识别算法[J].计算机工程,2006,32(16):165-166. 被引量:6
  • 8YE J E, JANARDAN R. GPCA: an efficient dimension reduction scheme for image compression and retrieval [C]// International Conference on Knowledge Discovery and Data Mining. Seattle, USA,2004: 354-363. 被引量:1
  • 9尹洪涛,付平,孟升卫.基于自适应加权Fisherface算法的人脸识别[J].光电子.激光,2006,17(11):1405-1408. 被引量:14

二级参考文献13

  • 1丁嵘,戴琼海,徐文立,苏光大,尹浩.大样本库人脸识别的分级弹性匹配算法[J].光电子.激光,2004,15(10):1238-1241. 被引量:4
  • 2杜成,苏光大,林行刚,顾华.改进的线段Hausdorff距离人脸识别方法[J].光电子.激光,2005,16(1):89-93. 被引量:10
  • 3Turk M, Pentland A. Eigenfaces for Recognition[J]. Cognitive Neuroscience, 1991, 3( 1):71-86. 被引量:1
  • 4Liu Ke, Cheng Yongqing, Yang Jingyu. Algebraic Feature Extraction for Image Recognition Based on an Optimal Discriminant Criterion[J].Pattern Recognition, 1993, 26 (6): 903-911. 被引量:1
  • 5Yang Jian, Zhang D, Frangi A F, et al, Two-Dimensional PCA: A New Approach to Appearance-based Face Representation and Recognition[J]. IEEE PAMI, 2004, 26(1): 131-137. 被引量:1
  • 6Chen Songcan, Zhu Yulian, Zhang Daoqiang, et al. Feature Extraction Approaches Based on Matrix Pattern: MatPCA and MatFLDA[J].Pattern Recognition Letters, 2005, 26(8): 1157-1167. 被引量:1
  • 7Gottumukkal R, Asari V K. An Improved Face Recognition Technique Based on Modular PCA Approach[J]. Pattern Recognition Letters,2004, 25(4): 429-436. 被引量:1
  • 8Daniel L Swets, John Weng. Using discrimiant eigenfeatures for image retrieval [J]. IEEE Trans Pattern Anal Machine Intell , 1996,18(7) :831-836. 被引量:1
  • 9Richard O Duda, Peter E Hard, David G Stork. Pattern Classification [M]. Second Edition, Beijing: China Machine Press,2003.94-102. 被引量:1
  • 10Belhumeur P N,Hespanha J P, Kriengman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Trans Pattern Anal Machine Intell , 1997,19(7):711-720. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部